764 research outputs found

    Pulmonary Biomarkers of Bronchopulmonary Dysplasia

    Get PDF
    Bronchopulmonary dysplasia, or BPD, is a chronic pulmonary disorder of premature infants, commonly defined as having an oxygen requirement at 36 weeks postmenstrual age. It is an important source of morbidity and mortality in premature neonates. Its’ etiology appears to be multifactorial with the most common associations being prematurity, need for mechanical ventilation, and oxygen exposure. Implied in the pathogenesis of BPD is the role of cytokines which are immune mediators produced by most cell types. This is evidenced by studies in which there exist alterations in the levels of “pro-inflammatory” and “anti-inflammatory” cytokines. The imbalance of these cytokines have either heralded the onset or predicted the presence of BPD, or indicated a decreased propensity to developing this chronic respiratory disorder of preterm infants. Many other pulmonary markers have been shown to be altered in patients with BPD. These include markers indicative of altered lung repair processes, decreased endothelial integrity, oxidative damage and abnormal fibrinolytic activity, all of which are thought to be mechanisms contributing to the development of BPD

    Recent Advances in Understanding and Management of Bronchopulmonary Dysplasia

    Get PDF
    © 2020 Sahni M and Bhandari V. In the current era, the survival of extremely low-birth-weight infants has increased considerably because of new advances in technology; however, these infants often develop chronic dysfunction of the lung, which is called bronchopulmonary dysplasia (BPD). BPD remains an important cause of neonatal mortality and morbidity despite newer and gentler modes of ventilation. BPD results from the exposure of immature lungs to various antenatal and postnatal factors that lead to an impairment in lung development and aberrant growth of lung parenchyma and vasculature. However, we still struggle with a uniform definition for BPD that can help predict various short- and long-term pulmonary outcomes. With new research, our understanding of the pathobiology of this disease has evolved, and many new mechanisms of lung injury and repair are now known. By utilizing the novel \u27omic\u27 approaches in BPD, we have now identified various factors in the disease process that may act as novel therapeutic targets in the future. New investigational agents being explored for the management and prevention of BPD include mesenchymal stem cell therapy and insulin-like growth factor 1. Despite this, many questions remain unanswered and require further research to improve the outcomes of premature infants with BPD

    TREM-1 Attenuates RIPK3-mediated Necroptosis in Hyperoxia-induced Lung Injury in Neonatal Mice

    Get PDF
    Hyperoxia-induced injury to the developing lung, impaired alveolarization, and dysregulated vascularization are critical factors in the pathogenesis of bronchopulmonary dysplasia (BPD); however, mechanisms for hyperoxia-induced development of BPD are not fully known. In this study, we show that TREM-1 (triggering receptor expressed on myeloid cells 1) is upregulated in hyperoxia-exposed neonatal murine lungs as well as in tracheal aspirates and lungs of human neonates with respiratory distress syndrome and BPD as an adaptive response to survival in hyperoxia. Inhibition of TREM-1 function using an siRNA approach or deletion of the Trem 1 gene in mice showed enhanced lung inflammation, alveolar damage, and mortality of hyperoxia-exposed neonatal mice. The treatment of hyperoxia-exposed neonatal mice with agonistic TREM-1 antibody decreased lung inflammation, improved alveolarization, and was associated with diminished necroptosis-regulating protein RIPK3 (receptor-interacting protein kinase 3). Mechanistically, we show that TREM-1 activation alleviates lung inflammation and improves alveolarization through downregulating RIPK3-mediated necroptosis and NLRP3 (nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3) inflammasome activation in hyperoxia-exposed neonatal mice. These data show that activating TREM-1, enhancing angiopoietin 1 signaling, or blocking the RIPK3-mediated necroptosis pathway may be used in new therapeutic interventions to control adverse effects of hyperoxia in the development of BPD.Peer reviewe

    The Neurodevelopmental Perspective of Surgical Necrotizing Enterocolitis: The Role of the Gut-Brain Axis.

    Get PDF
    This state-of-the-art review article aims to highlight the most recent evidence about the therapeutic options of surgical necrotizing enterocolitis, focusing on the molecular basis of the gut-brain axis in relevance to the neurodevelopmental outcomes of primary peritoneal drainage and primary laparotomy. Current evidence favors primary laparotomy over primary peritoneal drainage as regards neurodevelopment in the surgical treatment of necrotizing enterocolitis. The added exposure to inhalational anesthesia in infants undergoing primary laparotomy is an additional confounding variable but requires further study. The concept of the gut-brain axis suggests that bowel injury initiates systemic inflammation potentially affecting the developing central nervous system. Signals about microbes in the gut are transduced to the brain and the limbic system via the enteric nervous system, autonomic nervous system, and hypothalamic-pituitary axis. Preterm infants with necrotizing enterocolitis have significant differences in the diversity of the microbiome compared with preterm controls. The gut bacterial flora changes remarkably prior to the onset of necrotizing enterocolitis with a predominance of pathogenic organisms. The type of initial surgical approach correlates with the length of functional gut and microbiome equilibrium influencing brain development and function through the gut-brain axis. Existing data favor patients who were treated with primary laparotomy over those who underwent primary peritoneal drainage in terms of neurodevelopmental outcomes. We propose that this is due to the sustained injurious effect of the remaining diseased and necrotic bowel on the developing newborn brain, in patients treated with primary peritoneal drainage, through the gut-brain axis and probably not due to the procedure itself

    A potential role of the JNK pathway in hyperoxia-induced cell death, myofibroblast transdifferentiation and TGF-β1-mediated injury in the developing murine lung

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transforming growth factor-beta 1 (TGF-β1) has been implicated in hyperoxia-induced cell death and impaired alveolarization in the developing lung. In addition, the c-JunNH2-terminal kinase (JNK) pathway has been shown to have a role for TGF-β1-mediated effects. We hypothesized that the JNK pathway is an important regulator of hyperoxia-induced pulmonary responses in the developing murine lung.</p> <p>Results</p> <p>We used cultured human lung epithelial cells, fetal rat lung fibroblasts and a neonatal TGF-β1 transgenic mouse model. We demonstrate that hyperoxia inhibits cell proliferation, activates cell death mediators and causes cell death, and promotes myofibroblast transdifferentiation, in a dose-dependent manner. Except for fibroblast proliferation, the effects were mediated via the JNK pathway. In addition, since we observed increased expression of TGF-β1 by epithelial cells on exposure to hyperoxia, we used a TGF-β1 transgenic mouse model to determine the role of JNK activation in TGF-β1 induced effects on lung development and on exposure to hyperoxia. We noted that, in this model, inhibition of JNK signaling significantly improved the spontaneously impaired alveolarization in room air and decreased mortality on exposure to hyperoxia.</p> <p>Conclusions</p> <p>When viewed in combination, these studies demonstrate that hyperoxia-induced cell death, myofibroblast transdifferentiation, TGF-β1- and hyperoxia-mediated pulmonary responses are mediated, at least in part, via signaling through the JNK pathway.</p

    The Airway Microbiome at Birth.

    Get PDF
    Alterations of pulmonary microbiome have been recognized in multiple respiratory disorders. It is critically important to ascertain if an airway microbiome exists at birth and if so, whether it is associated with subsequent lung disease. We found an established diverse and similar airway microbiome at birth in both preterm and term infants, which was more diverse and different from that of older preterm infants with established chronic lung disease (bronchopulmonary dysplasia). Consistent temporal dysbiotic changes in the airway microbiome were seen from birth to the development of bronchopulmonary dysplasia in extremely preterm infants. Genus Lactobacillus was decreased at birth in infants with chorioamnionitis and in preterm infants who subsequently went on to develop lung disease. Our results, taken together with previous literature indicating a placental and amniotic fluid microbiome, suggest fetal acquisition of an airway microbiome. We speculate that the early airway microbiome may prime the developing pulmonary immune system, and dysbiosis in its development may set the stage for subsequent lung disease
    corecore