115 research outputs found

    Simultaneous High-performance Liquid Chromatography-tandem Mass Spectrometry (HPLC-MS-MS) Analysis of Cyanide and Thiocyanate from Swine Plasma

    Get PDF
    An analytical procedure for the simultaneous determination of cyanide and thiocyanate in swine plasma was developed and validated. Cyanide and thiocyanate were simultaneously analyzed by high-performance liquid chromatography tandem mass spectrometry in negative ionization mode after rapid and simple sample preparation. Isotopically labeled internal standards, Na13C15N and NaS13C15N, were mixed with swine plasma (spiked and nonspiked), proteins were precipitated with acetone, the samples were centrifuged, and the supernatant was removed and dried. The dried samples were reconstituted in 10 mM ammonium formate. Cyanide was reacted with naphthalene-2,3-dicarboxaldehyde and taurine to form N-substituted 1-cyano[f]benzoisoindole, while thiocyanate was chemically modified with monobromobimane to form an SCN-bimane product. The method produced dynamic ranges of 0.1–50 and 0.2–50 μM for cyanide and thiocyanate, respectively, with limits of detection of 10 nM for cyanide and 50 nM for thiocyanate. For quality control standards, the precision, as measured by percent relative standard deviation, was below 8 %, and the accuracy was within ±10 % of the nominal concentration. Following validation, the analytical procedure successfully detected cyanide and thiocyanate simultaneously from the plasma of cyanide-exposed swine

    Toxicokinetic Profiles of α-ketoglutarate Cyanohydrin, a Cyanide Detoxification Product, Following Exposure to Potassium Cyanide

    Get PDF
    Poisoning by cyanide can be verified by analysis of the cyanide detoxification product, α-ketoglutarate cyanohydrin (α-KgCN), which is produced from the reaction of cyanide and endogenous α-ketoglutarate. Although α-KgCN can potentially be used to verify cyanide exposure, limited toxicokinetic data in cyanide-poisoned animals are available. We, therefore, studied the toxicokinetics of α-KgCN and compared its behavior to other cyanide metabolites, thiocyanate and 2-amino-2-thiazoline-4-carboxylic acid (ATCA), in the plasma of 31 Yorkshire pigs that received KCN (4 mg/mL) intravenously (IV) (0.17 mg/kg/min). α-KgCN concentrations rose rapidly during KCN administration until the onset of apnea, and then decreased over time in all groups with a half-life of 15 min. The maximum concentrations of α-KgCN and cyanide were 2.35 and 30.18 μM, respectively, suggesting that only a small fraction of the administered cyanide is converted to α-KgCN. Although this is the case, the α-KgCN concentration increased \u3e100-fold over endogenous concentrations compared to only a three-fold increase for cyanide and ATCA. The plasma profile of α-KgCN was similar to that of cyanide, ATCA, and thiocyanate. The results of this study suggest that the use of α-KgCN as a biomarker for cyanide exposure is best suited immediately following exposure for instances of acute, high-dose cyanide poisoning

    Simultaneous Determination of Cyanide and Thiocyanate in Plasma by Chemical Ionization Gas Chromatography Mass-spectrometry (CI-GC-MS)

    Get PDF
    An analytical method utilizing chemical ionization gas chromatography-mass spectrometry was developed for the simultaneous determination of cyanide and thiocyanate in plasma. Sample preparation for this analysis required essentially one-step by combining the reaction of cyanide and thiocyanate with pentafluorobenzyl bromide and simultaneous extraction of the product into ethyl acetate facilitated by a phase-transfer catalyst, tetrabutylammonium sulfate. The limits of detection for cyanide and thiocyanate were 1 μM and 50 nM, respectively. The linear dynamic range was from 10 μM to 20 mM for cyanide and from 500 nM to 200 μM for thiocyanate with correlation coefficients higher than 0.999 for both cyanide and thiocyanate. The precision, as measured by %RSD, was below 9 %, and the accuracy was within 15 % of the nominal concentration for all quality control standards analyzed. The gross recoveries of cyanide and thiocyanate from plasma were over 90 %. Using this method, the toxicokinetic behavior of cyanide and thiocyanate in swine plasma was assessed following cyanide exposure

    Plasma Persistence of 2-Aminothiazoline-4-Carboxylic Acid in Rat System Determined by Liquid Chromatography Tandem Mass Spectrometry

    Get PDF
    2-Aminothiazoline-4-carboxylic acid (ATCA) was intravenously injected to rats in order to investigate its plasma distribution. ATCA was extracted from plasma samples by solid phase extraction (SPE) and molecularly imprinted polymer stir bar sorption extraction (MIP-SBSE). Detection and quantification of ATCA were achieved by using liquid chromatography–tandem mass spectrometry (LC–MS/MS). It was found that the intravenously injected ATCA concentration quickly decreased to half within 2.5 h in the rat system. However, after 2.5 h, the concentration of ATCA in plasma stayed constant at least 5 folds above the endogenous ATCA level for more then 48 h. This finding can be used for evaluating ATCA\u27s diagnostic and forensic value as a biomarker for cyanide exposure

    Evaluation of sunnhemp (Crotalaria juncea) genotypes for high fibre yield

    Get PDF
    Four genetically different genotypes of sunnhemp (Crotalaria juncea L.) were evaluated for fibre yield and its yield component traits for three years 2008-2009 to 2010-2011 at Sunnhemp Research Station, Pratapgarh, Uttar Pradesh. Significant differences among experimental genotypes were recorded for fibre yield and its attributes. High fibre yield/ha was recorded for SUIN-029 (9.06 q/ha) followed by SUIN-80 (8.94 q/ha). The highest green biomass yield (337.30 q/ha) and stick yield (52.41 q/ha) were recorded for SUIN-029. The analysis of the data for all years revealed superiority of genotype SUIN-029 for most of the fibre yield traits. This genotype can be used as donor for future breeding programme

    Cyanide Toxicokinetics: The Behavior of Cyanide, Thiocyanate and 2-Amino-2-Thiazoline-4-Carboxylic Acid in Multiple Animal Models

    Get PDF
    Cyanide causes toxic effects by inhibiting cytochrome c oxidase, resulting in cellular hypoxia and cytotoxic anoxia, and can eventually lead to death. Cyanide exposure can be verified by direct analysis of cyanide concentrations or analyzing its metabolites, including thiocyanate (SCN−) and 2-amino-2-thiazoline-4-carboxylic acid (ATCA) in blood. To determine the behavior of these markers following cyanide exposure, a toxicokinetics study was performed in three animal models: (i) rats (250–300 g), (ii) rabbits (3.5–4.2 kg) and (iii) swine (47–54 kg). Cyanide reached a maximum in blood and declined rapidly in each animal model as it was absorbed, distributed, metabolized and eliminated. Thiocyanate concentrations rose more slowly as cyanide was enzymatically converted to SCN−. Concentrations of ATCA did not rise significantly above the baseline in the rat model, but rose quickly in rabbits (up to a 40-fold increase) and swine (up to a 3-fold increase) and then fell rapidly, generally following the relative behavior of cyanide. Rats were administered cyanide subcutaneously and the apparent half-life (t1/2) was determined to be 1,510 min. Rabbits were administered cyanide intravenously and the t1/2 was determined to be 177 min. Swine were administered cyanide intravenously and the t1/2 was determined to be 26.9 min. The SCN−t1/2 in rats was 3,010 min, but was not calculated in rabbits and swine because SCN−concentrations did not reach a maximum. The t1/2 of ATCA was 40.7 and 13.9 min in rabbits and swine, respectively, while it could not be determined in rats with confidence. The current study suggests that cyanide exposure may be verified shortly after exposure by determining significantly elevated cyanide and SCN− in each animal model and ATCA may be used when the ATCA detoxification pathway is significant

    Evaluating hospital websites in Kuwait to improve consumer engagement and access to health information:a cross-sectional analytical study

    Get PDF
    Abstract Background Current advances in information and communication technology have made accessing and obtaining health-related information easier than ever before. Today, many hospital websites use a patient-centric approach to promote engagement and encourage learning for better health-related decision making. However, little is known about the current state of hospital websites in the State of Kuwait. This study aims to evaluate hospital websites in Kuwait and offer recommendations to improve patient engagement and access to health information. Methods This study employs a cross-sectional analytical approach to evaluate hospital websites in Kuwait in 2017. The websites of hospitals that provide in-patient services were identified through a structured search. Only active websites that were available in either English or Arabic were considered. The evaluation of the websites involved a combination of automated and expert- based evaluation methods and was performed across four dimensions: Accessibility, Usability, Presence, and Content. Results Nine hospitals met the inclusion criteria. Most of the websites fell short in all four dimensions. None of the websites passed the accessibility guidelines. The usability of websites varied between hospitals. Overall, the majority of hospitals in Kuwait have rudimentary online presence and their websites require careful reassessment with respect to design, content, and user experience. The websites focus primarily on promoting services provided by the hospital rather than engaging and communicating with patients or providing evidence-based information. Conclusions Healthcare organization and website developers should follow best-practices to improve their websites taking into consideration the quality, readability, objectivity, coverage and currency of the information as well as the design of their websites. Hospitals should leverage social media to gain outreach and better engagement with consumers. The websites should be offered in additional languages commonly spoken by people living in Kuwait. Efforts should be made to ensure that health information on hospital websites are evidence-based and checked by healthcare professionals

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure
    • …
    corecore