2,489 research outputs found

    Serotonin Syndrome with Escitolapram and Concomitant Use of Cocaine: A Case Report

    Get PDF
    Introduction Serotonin syndrome is a potentially life-threatening condition caused by excessive serotonergic activity in the central nervous system. It is characterized by mental status changes (eg, confusion, agitation, lethargy, coma), autonomic instability (eg, hyperthermia, tachycardia, diaphoresis, nausea, vomiting, diarrhea, dilated pupils), and neuromuscular hyperactivity (eg, myoclonus, hyperreflexia, rigidity, trismus). Serotonin syndrome classically occurs in patients receiving two or more serotonergic drugs, but it can occur with monotherapy. We report a case of a 20-year-old man who developed serotonin syndrome resulting from overdose of Escitolapram with concomitant use of cocaine. It is a very important area in medicine as serotonin syndrome should be suspected especially in drug abusers who are being treated with psychotropic agents for mental illnesses

    Microwave (EPR) measurements of the penetration depth measurements of high-Tc superconductors

    Get PDF
    The use is discussed of electron paramagnetic resonance (EPR) as a quick and easily accessible method for measuring the London penetration depth, lambda for the high T sub c superconductors. The method uses the broadening of the EPR signal, due to the emergence of the magnetic flux lattice, of a free radical adsorbed on the surface of the sample. The second moment, of the EPR signal below T sub c is fitted to the Brandt equation for a simple triangular lattice. The precision of this method compares quite favorably with those of the more standard methods such as micro sup(+)SR, neutron scattering, and magnetic susceptibility

    Synthesis, characterization and 11C radiolabeling of aminophenyl benzothiazoles:structural effects on the alkylation of amino group

    Get PDF
    Several aminophenyl benzothiazoles were prepared with a view to using them as amyloid binding agents for imaging β-amyloid in Alzheimer's disease. These precursors were radiolabeled with 11C-positron-emitting radioisotope using an automated synthesizer and selected radiolabeled compounds were further purified by HPLC. Our results demonstrate that changes in structure have a major influence on the radioactive yield and the ease with which the radiolabel can be introduced. Aminophenyl benzothiazoles with an attached isopropyl group resisted dialkylation perhaps due to steric hindrance caused by this group. Straight chain attachment of methyl, ethyl, butyl, and crotyl groups in the structure decreased the radiochemical yield. Notably, the o-aminophenyl benzothiazole derivatives were difficult to alkylate despite stringent experimental conditions. This reactivity difference is attributed to the hydrogen bonding characteristics of the o-amino group with the nitrogen atom of the thiazole ring

    Detection of Landmine Signature using SAW-based Polymer-coated Chemical Sensor

    Get PDF
    The explosive charge within a landmine is the source for a mixture of chemical vapours that form a distinctive chemical signature indicative of a landmine. The concentrations of these compounds in the air over landmines is extremely low (parts-per-trillion or lower), well below the minimum detection limits of most field-portable chemical sensors. This paper describes a portable  surface acoustic wave-based polymer-coated sensor for the detection of hidden explosives. The sensitivity and selectivity of polymer-based sensors depend on several factors including the chemo-selective coating used, the physical properties of the vapour(s) of interest, the selected transducers, and the operating conditions. The polymer-based sensor was calibrated in the  laboratory using the explosive vapour generator. The preliminary results indicated that the carbowax 1000 could be a very good chemical interface to sense low levels of chemical signature of explosive material. Response for 50 ppb of TNT vapours was observed to be 400 Hz for an exposure of 2 min

    Colossal magnetocapacitance and scale-invariant dielectric response in phase-separated manganites

    Full text link
    Thin films of strongly-correlated electron materials (SCEM) are often grown epitaxially on planar substrates and typically have anisotropic properties that are usually not captured by edge-mounted four-terminal electrical measurements, which are primarily sensitive to in-plane conduction paths. Accordingly, the correlated interactions in the out-of-plane (perpendicular) direction cannot be measured but only inferred. We address this shortcoming and show here an experimental technique in which the SCEM under study, in our case a 600 Angstrom-thick (La1-yPry)0.67Ca0.33MnO3 (LPCMO) film, serves as the base electrode in a metal-insulator-metal (MIM) trilayer capacitor structure. This unconventional arrangement allows for simultaneous determination of colossal magnetoresistance (CMR) associated with dc transport parallel to the film substrate and colossal magnetocapacitance (CMC) associated with ac transport in the perpendicular direction. We distinguish two distinct strain-related direction-dependent insulator-metal (IM) transitions and use Cole-Cole plots to establish a heretofore unobserved collapse of the dielectric response onto a universal scale-invariant power-law dependence over a large range of frequency, temperature and magnetic field.Comment: 32 pages, 4 figures, Supplementary section included, Submitted to Nature Physic

    Mucinous intrahepatic cholangiocarcinoma: a distinct variant

    Get PDF
    Mucinous variant of intrahepatic cholangiocarcinoma (iCC) is rare, and its clinicopathological features and prognosis are far less clear. Six patients who had iCCs with more than 50% of mucinous component and 79 conventional iCCs were included in the study. The mean size of mucinous and conventional iCCs was 6.2 cm and 6.0 cm, respectively. The majority of patients (83%) with mucinous iCC presented at T3 stage or above, compared to 28% of the conventional group (p < 0.01). Three patients with mucinous iCC (50%) died within 1 year. The average survival time of patients with mucinous iCCs was significantly reduced compared to that of conventional group (9 months vs 2 years; P < .001). Immunohistochemistry was performed on 6 mucinous and 12 conventional iCCs with matched age, sex and stage, which revealed positive immunoreactivity in MUC1 (83% vs 58%), MUC2 (33% vs 17%), MUC5AC (100% vs 42%), MUC6 (50% vs 0), CK7 (83% vs 83%), CK20 (0 vs 17%), and CDX2 (17% vs 0) in mucinous and conventional iCCs, respectively. Molecular studies showed one mucinous iCC with KRAS G12C mutation and no BRAF or IDH1/2 mutations. Mucinous iCC is a unique variant that constitutes 7.2% of iCCs. It is more immunoreactive for MUC1, MUC2, MUC5AC and MUC6. Unlike adenocarcinomas of colorectal primary, mucinous iCCs are often CK7+/CK20-/CDX2- and microsatellite stable. Patients with mucinous iCC likely present at advanced stage upon diagnosis with shorter survival time compared to the conventional counterparts

    Deletion of the glucocorticoid receptor chaperone FKBP51 prevents glucocorticoid-induced skin atrophy

    Get PDF
    FKBP51 (FK506-binding protein 51) is a known co-chaperone and regulator of the glucocorticoid receptor (GR), which usually attenuates its activity. FKBP51 is one of the major GR target genes in skin, but its role in clinical effects of glucocorticoids is not known. Here, we used FKBP51 knockout (KO) mice to determine FKBP51's role in the major adverse effect of topical glucocorticoids, skin atrophy. Unexpectedly, we found that all skin compartments (epidermis, dermis, dermal adipose and CD34+ stem cells) in FKBP51 KO animals were much more resistant to glucocorticoid-induced hypoplasia. Furthermore, despite the absence of inhibitory FKBP51, the basal level of expression and glucocorticoid activation of GR target genes were not increased in FKBP51 KO skin or CRISPR/Cas9-edited FKBP51 KO HaCaT human keratinocytes. FKBP51 is known to negatively regulate Akt and mTOR. We found a significant increase in AktSer473 and mTORSer2448 phosphorylation and downstream pro-growth signaling in FKBP51-deficient keratinocytes in vivo and in vitro. As Akt/mTOR-GR crosstalk is usually negative in skin, our results suggest that Akt/mTOR activation could be responsible for the lack of increased GR function and resistance of FKBP51 KO mice to the steroid-induced skin atrophy

    Adaptive dynamic control of quadrupedal robotic gaits with artificial reaction networks.

    Get PDF
    The Artificial Reaction Network (ARN) is a bio-inspired connectionist paradigm based on the emerging field of Cellular Intelligence. It has properties in common with both AI and Systems Biology techniques including Artificial Neural Networks, Petri Nets, and S-Systems. In this paper, elements of temporal dynamics and pattern recognition are combined within a single ARN control system for a quadrupedal robot. The results show that the ARN has similar applicability to Artificial Neural Network models in robotic control tasks. In comparison to neural Central Pattern Generator models, the ARN can control gaits and offer reduced complexity. Furthermore, the results show that like spiky neural models, the ARN can combine pattern recognition and complex temporal control functionality in a single network
    corecore