2,936 research outputs found

    Energy Eigenvalues For Supersymmetric Potentials via Quantum Hamilton-Jacobi Formalism

    Get PDF
    Using quantum Hamilton-Jacobi formalism of Leacock and Padgett, we show how to obtain the exact eigenvalues for supersymmetric (SUSY) potentials.Comment: 15 pages Latex Compile twice to get cross references correct. 2 Figures not included. Requests for figures should be sent to [email protected]

    Quantum Hamilton-Jacobi analysis of PT symmetric Hamiltonians

    Full text link
    We apply the quantum Hamilton-Jacobi formalism, naturally defined in the complex domain, to a number of complex Hamiltonians, characterized by discrete parity and time reversal (PT) symmetries and obtain their eigenvalues and eigenfunctions. Examples of both quasi-exactly and exactly solvable potentials are analyzed and the subtle differences, in the singularity structures of their quantum momentum functions, are pointed out. The role of the PT symmetry in the complex domain is also illustrated.Comment: 11 page

    Tunneling magnetoresistance in (La,Pr,Ca)MnO3 nanobridges

    Full text link
    The manganite (La,Pr,Ca)MnO3 is well known for its micrometer scale phase separation into coexisting ferromagnetic metallic and antiferromagnetic insulating (AFI) regions. Fabricating bridges with widths smaller than the phase separation length scale has allowed us to probe the magnetic properties of individual phase separated regions. We observe tunneling magnetoresistance across naturally occurring AFI tunnel barriers separating adjacent ferromagnetic regions spanning the width of the bridges. Further, near the Curie temperature, a magnetic field induced metal-to-insulator transition among a discrete number of regions within the narrow bridges gives rise to abrupt and colossal low-field magnetoresistance steps at well defined switching fields.Comment: 13 pages, 3 figures, submitted to Applied Physics Letter

    Microwave (EPR) measurements of the penetration depth measurements of high-Tc superconductors

    Get PDF
    The use is discussed of electron paramagnetic resonance (EPR) as a quick and easily accessible method for measuring the London penetration depth, lambda for the high T sub c superconductors. The method uses the broadening of the EPR signal, due to the emergence of the magnetic flux lattice, of a free radical adsorbed on the surface of the sample. The second moment, of the EPR signal below T sub c is fitted to the Brandt equation for a simple triangular lattice. The precision of this method compares quite favorably with those of the more standard methods such as micro sup(+)SR, neutron scattering, and magnetic susceptibility

    Oxide perovskite crystals for HTSC film substrates microwave applications

    Get PDF
    The research focused upon generating new substrate materials for the deposition of superconducting yttrium barium cuprate (YBCO) has yielded several new hosts in complex perovskites, modified perovskites, and other structure families. New substrate candidates such as Sr(Al(1/2)Ta(1/2))O3 and Sr(Al(1/2)Nb(1/2))O3, Ba(Mg(1/3)Ta(2/3))O3 in complex oxide perovskite structure family and their solid solutions with ternary perovskite LaAlO3 and NdGaO3 are reported. Conventional ceramic processing techniques were used to fabricate dense ceramic samples. A laser heated molten zone growth system was utilized for the test-growth of these candidate materials in single crystal fiber form to determine crystallographic structure, melting point, thermal, and dielectric properties as well as to make positive identification of twin free systems. Some of those candidate materials present an excellent combination of properties suitable for microwave HTSC substrate applications

    Calculation of Band Edge Eigenfunctions and Eigenvalues of Periodic Potentials through the Quantum Hamilton - Jacobi Formalism

    Full text link
    We obtain the band edge eigenfunctions and the eigenvalues of solvable periodic potentials using the quantum Hamilton - Jacobi formalism. The potentials studied here are the Lam{\'e} and the associated Lam{\'e} which belong to the class of elliptic potentials. The formalism requires an assumption about the singularity structure of the quantum momentum function pp, which satisfies the Riccati type quantum Hamilton - Jacobi equation, p2−iℏddxp=2m(E−V(x)) p^{2} -i \hbar \frac{d}{dx}p = 2m(E- V(x)) in the complex xx plane. Essential use is made of suitable conformal transformations, which leads to the eigenvalues and the eigenfunctions corresponding to the band edges in a simple and straightforward manner. Our study reveals interesting features about the singularity structure of pp, responsible in yielding the band edge eigenfunctions and eigenvalues.Comment: 21 pages, 5 table

    PCN8 AVERAGE TOTAL COST OF TREATING ADVANCED NON-SMALL-CELL LUNG CANCER PATIENTS IN SPAIN USING VARIOUS CHEMOTHERAPY DOUBLETS

    Get PDF

    Hazard Classification Testing of Primers used in Small Arms Ammunition.

    Get PDF
    Primer is a small initiating device used for ignition of propellant charge and subsequent ejection of projectile from a weapon. Hilherto, primers were classified under safely class. Recent accidents however, have raised doubts about their diversification. Field trials were therefore carried out to ascertain their correct behaviour under different conditions. It was observed that the nature of filling composition, its charge mass and the type of package had profound influence on the hazard classification which could change its classification from safety class to mass explosion hazard
    • 

    corecore