44 research outputs found

    Warfarin-induced skin necrosis in HIV-1-infected patients with tuberculosis and venous thrombosis

    Get PDF
    Background. At the turn of the century, only 300 cases of warfarin-induced skin necrosis (WISN) had been reported. WISN is a rare but potentially fatal complication of warfarin therapy. There are no published reports of WISN occurring in patients with HIV-1 infection or tuberculosis (TB).Methods. We retrospectively reviewed cases of WISN presenting from April 2005 to July 2008 at a referral hospital in Cape Town, South Africa.Results. Six cases of WISN occurred in 973 patients receiving warfarin therapy for venous thrombosis (0.62%, 95% CI 0.25 - 1.37%). All 6 cases occurred in HIV-1-infected women (median age 30 years, range 27 - 42) with microbiologically confirmed TB and venous thrombosis. All were profoundly immunosuppressed (median CD4+ count at TB diagnosis49 cells/μl, interquartile range 23 - 170). Of the 3 patients receiving combination antiretroviral therapy, 2 had TB-IRIS (immune reconstitution inflammatory syndrome). The median interval from initiation of antituberculosis treatment to venous thrombosis was 37 days (range 0 - 150). The median duration of parallel heparin and warfarin therapy was 2days (range 1 - 6). WISN manifested 6 days (range 4 - 8) after initiation of warfarin therapy. The international normalised ratio (INR) at WISN onset was supra-therapeutic, median 5.6 (range 3.8 - 6.6). Sites of WISN included breasts, buttocks and thighs. Four of 6 WISN sites were secondarily infected with drug-resistant nosocomial bacteria (methicillin-resistant Staphylococcus aureus (MRSA), Acinetobacter, extendedspectrumβ-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae) 17 - 37 days after WISN onset. In 4 patients, the median interval from WISN onset to death was 43 days (range 25 - 45). One of the 2 patients who survived underwent bilateral mastectomies and extensive skin graftingat a specialist centre. Conclusion. This is one of the largest case series of WISN. We report a novel clinical entity: WISN in HIV-1 infected patients with TB and venous thrombosis. The occurrence of 6 WISN cases in a 40-month period may be attributed to (i) hypercoagulability, secondary to HIV-1 and TB; (ii) shortconcurrent heparin and warfarin therapy; and (iii) high loading doses of warfarin. Active prevention and appropriate management of WISN are likely to improve the dire morbidity and mortality of this unusual condition.S Afr Med J 2010; 100: 372-377

    Warfarin-induced skin necrosis in HIV-infected patients with tuberculosis and venous thrombosis

    Get PDF
    Background. At the turn of the century, only 300 cases of warfarin-induced skin necrosis (WISN) had been reported. WISN is a rare but potentially fatal complication of warfarin therapy. There are no published reports of WISN occurring in patients with HIV-1 infection or tuberculosis (TB). Methods. We retrospectively reviewed cases of WISN presenting from April 2005 to July 2008 at a referral hospital in Cape Town, South Africa. Results. Six cases of WISN occurred in 973 patients receiving warfarin therapy for venous thrombosis (0.62%, 95% CI 0.25 - 1.37%). All 6 cases occurred in HIV-1-infected women (median age 30 years, range 27 - 42) with microbiologically confirmed TB and venous thrombosis. All were profoundly immunosuppressed (median CD4+ count at TB diagnosis 49 cells/µl, interquartile range 23 - 170). Of the 3 patients receiving combination antiretroviral therapy, 2 had TB-IRIS (immune reconstitution inflammatory syndrome). The median interval from initiation of antituberculosis treatment to venous thrombosis was 37 days (range 0 - 150). The median duration of parallel heparin and warfarin therapy was 2 days (range 1 - 6). WISN manifested 6 days (range 4 - 8) after initiation of warfarin therapy. The international normalised ratio (INR) at WISN onset was supra-therapeutic, median 5.6 (range 3.8 - 6.6). Sites of WISN included breasts, buttocks and thighs. Four of 6 WISN sites were secondarily infected with drug-resistant nosocomial bacteria (methicillin-resistant Staphylococcus aureus (MRSA), Acinetobacter, extendedspectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae) 17 - 37 days after WISN onset. In 4 patients, the median interval from WISN onset to death was 43 days (range 25 - 45). One of the 2 patients who survived underwent bilateral mastectomies and extensive skin grafting at a specialist centre. Conclusion. This is one of the largest case series of WISN. We report a novel clinical entity: WISN in HIV-1 infected patients with TB and venous thrombosis. The occurrence of 6 WISN cases in a 40-month period may be attributed to (i) hypercoagulability, secondary to HIV-1 and TB; (ii) short concurrent heparin and warfarin therapy; and (iii) high loading doses of warfarin. Active prevention and appropriate management of WISN are likely to improve the dire morbidity and mortality of this unusual condition

    Assessment at Antiretroviral Clinics during TB Treatment Reduces Loss to Follow-Up among HIV-Infected Patients

    Get PDF
    A South African township clinic where loss to follow-up during TB treatment may prevent HIV-infected TB patients from receiving life-saving ART.To determine factors associated with loss to follow-up during TB treatment.Regression analyses of a cohort of ART-eligible TB patients who commenced TB treatment and were followed for 24 weeks.Of 111 ART-eligible TB patients, 15 (14%) died in the ensuing 24 weeks. Of the remaining 96 TB patients, 11 (11%) were lost to follow-up. All TB patients lost to follow-up did not initiate ART. Of 85 TB patients in follow-up, 62 (73%) initiated ART 56 days after TB diagnosis (median, IQR 33-77 days) and 31 days after initial assessment at an ART clinic (median, IQR: 18-55 days). The median duration from TB diagnosis to initial assessment at an ART clinic was 19 days (IQR: 7-48 days). At 24 weeks, 6 of 85 (7%) TB patients who presented to an ART clinic for assessment were lost to follow-up, compared to 5 of 11 (45%) TB patients who did not present to an ART clinic for assessment. Logistic regression analysis (adjusted odds ratio = 0.1, 95% confidence interval [95% CI]: 0.03-0.66) and our Cox proportional hazards model (hazard ratio = 0.2, 95% CI: 0.04-0.68) confirmed that assessment at an ART clinic during TB treatment reduced loss to follow-up.Assessment at antiretroviral clinics for HIV care by trained health-care providers reduces loss to follow-up among HIV-infected patients with TB

    Sequencing technologies and genome sequencing

    Get PDF
    The high-throughput - next generation sequencing (HT-NGS) technologies are currently the hottest topic in the field of human and animals genomics researches, which can produce over 100 times more data compared to the most sophisticated capillary sequencers based on the Sanger method. With the ongoing developments of high throughput sequencing machines and advancement of modern bioinformatics tools at unprecedented pace, the target goal of sequencing individual genomes of living organism at a cost of $1,000 each is seemed to be realistically feasible in the near future. In the relatively short time frame since 2005, the HT-NGS technologies are revolutionizing the human and animal genome researches by analysis of chromatin immunoprecipitation coupled to DNA microarray (ChIP-chip) or sequencing (ChIP-seq), RNA sequencing (RNA-seq), whole genome genotyping, genome wide structural variation, de novo assembling and re-assembling of genome, mutation detection and carrier screening, detection of inherited disorders and complex human diseases, DNA library preparation, paired ends and genomic captures, sequencing of mitochondrial genome and personal genomics. In this review, we addressed the important features of HT-NGS like, first generation DNA sequencers, birth of HT-NGS, second generation HT-NGS platforms, third generation HT-NGS platforms: including single molecule Heliscope™, SMRT™ and RNAP sequencers, Nanopore, Archon Genomics X PRIZE foundation, comparison of second and third HT-NGS platforms, applications, advances and future perspectives of sequencing technologies on human and animal genome research
    corecore