196 research outputs found

    Synthesis and crystal structures of phthalocyanine derivatives containing bulky phenyloxy substituents

    Get PDF
    The planar extended shape of the phthalocyanine macrocycle results in a strong tendency of its derivatives to form densely packed co-facial aggregates. The strategy to avoid co-facial self-association that forms the basis of this thesis involves the use of substituents that can introduce severe steric crowding adjacent to the phthalocyanine core. Previous work showed that the introduction of 2,6-di-/jo-propylphenoxy groups on the peripheral positions of the phthalocyanine seems to be perfect for this purpose. Of particular interest is zinc octa(2,6-di-/$o-propylphenoxy) phthalocyanine (PclZn), which forms a remarkable cubic crystal structure, containing interconnected solvent-filled voids 2 nm across. The aim of the research programme was to investigate the crystal forming properties of related phthalocyanine derivatives containing different metal cations and bulky phenoxyl substituents. A range of metal cations were introduced into 2,3,9,10,16,17,23,24-octa(2',6'-di-/s0-propylphenoxy) phthalocyanine (Pel) to establish which, if any, were compatible with the formation of the nanoporous cubic crystal observed for the zinc derivative. It was found that any metal capable of binding to a ligand at its axial site formed the cubic crystal including metals of primary catalytic relevance such as cobalt, iron, manganese and ruthenium. Single crystal X-ray diffraction studies demonstrated the exchange of axial ligands to confirm the interconnectivity of the nanovoids, which is essential for the potential exploitation of these molecules in heterogeneous catalysis. Of particular interest is the introduction of bidentate ligands, which act as structural wall ties that bind metals between cubic subunits. Since loss of crystallinity occurs after removal of the guest solvent from the cubic clathrates, the introduction of substituents at the 4-position of the phenoxy groups was also investigated in order to induce stronger dipole-dipole (e.g., R = Br, CI, CN, OMe) or hydrogen bond interactions (e.g., R = OH), which might stabilise the crystal structure. Unfortunately, these derivatives formed non-cubic crystals, although in each case solvent was included within the structure to form novel clathrates

    Spirobifluorene-based polymers of intrinsic microporosity for the adsorption of methylene blue from wastewater: effect of surfactants

    Get PDF
    Owing to their high surface area and superior adsorption properties, spirobifluorene polymers of intrinsic microporosity (PIMs), namely PIM-SBF-Me (methyl) and PIM-SBF-tBu (tert-butyl), were used for the first time, to our knowledge, for the removal of methylene blue (MB) dye from wastewater. Spirobifluorene PIMs are known to have large surface area (can be up to 1100 m2 g−1) and have been previously used mainly for gas storage applications. Dispersion of the polymers in aqueous solution was challenging owing to their extreme hydrophobic nature leading to poor adsorption efficiency of MB. For this reason, cationic (cetyl-pyridinium chloride), anionic (sodium dodecyl sulfate; SDS) and non-ionic (Brij-35) surfactants were used and tested with the aim of enhancing the dispersion of the hydrophobic polymers in water and hence improving the adsorption efficiencies of the polymers. The effect of surfactant type and concentration were investigated. All surfactants offered a homogeneous dispersion of the polymers in the aqueous dye solution; however, the highest adsorption efficiency was obtained using an anionic surfactant (SDS) and this seems owing to the predominance of electrostatic interaction between its molecules and the positively charges dye molecules. Furthermore, the effect of polymer dosage and initial dye concentration on MB adsorption were also considered. The kinetic data for both polymers were well described by a pseudo-second-order model, while the Langmuir model better simulated the adsorption process of MB dye on PIM-SBF-Me and the Freundlich model was more suitable for PIM-SBF-tBu. Moreover, the maximum adsorption capacities recorded were 84.0 and 101.0 mg g−1 for PIM-SBF-Me and PIM-SBF-tBu, respectively. Reusability of both polymers was tested by performing three adsorption cycles and the results substantiate that both polymers can be effectively re-used with insignificant loss of their adsorption efficiency (®). These preliminary results suggested that incorporation of a surfactant to enhance the dispersion of hydrophobic polymers and adsorption of organic contaminants from wastewater is a simple and cost-effective approach that can be adapted for many other environmental applications

    Highly stable fullerene-based porous molecular crystals with open metal sites

    Get PDF
    The synthesis of conventional porous crystals involves building a framework using reversible chemical bond formation, which can result in hydrolytic instability. In contrast, porous molecular crystals assemble using only weak intermolecular interactions, which generally do not provide the same environmental stability. Here, we report that the simple co-crystallization of a phthalocyanine derivative and a fullerene (C60 or C70) forms porous molecular crystals with environmental stability towards high temperature and hot aqueous base or acid. Moreover, by using diamond anvil cells and synchrotron single-crystal measurements, stability towards extreme pressure (>4 GPa) is demonstrated, with the stabilizing fullerene held between two phthalocyanines and the hold tightening at high pressure. Access to open metal centres within the porous molecular co-crystal is demonstrated by in situ crystallographic analysis of the chemisorption of pyridine, oxygen and carbon monoxide. This suggests strategies for the formation of highly stable and potentially functional porous materials using only weak van der Waals intermolecular interactions

    A porphyrin-based microporous network polymer that acts as an efficient catalyst for cyclooctene and cyclohexane oxidation under mild conditions

    Get PDF
    The highly efficient dibenzodioxin-forming reaction between the (pentafluorophenyl)porphyrin manganese(III) (MnP) and hexahydroxytriptycene (HHT) provide a new microporous network polymer (P1), which demonstrated a large surface area (1080 m2 g− 1) and proved to be an efficient solid for heterogeneous catalysis for cyclooctene and cyclohexane oxidation under mild conditions and with high capacity of recovery and reuse in many catalytic cycles

    BN-Doped Metal–Organic Frameworks: Tailoring 2D and 3D Porous Architectures through Molecular Editing of Borazines

    Get PDF
    Building on the MOF approach to prepare porous materials, herein we report the engineering of porous BN-doped materials using tricarboxylic hexaarylborazine ligands, which are laterally decorated with functional groups at the full-carbon ‘inner shell’. Whilst an open porous 3D entangled structure could be obtained from the double interpenetration of two identical metal frameworks derived from the methyl substituted borazine, the chlorine-functionalised linker undergoes formation of a porous layered 2D honeycomb structure, as shown by single-crystal X-ray diffraction analysis. In this architecture, the borazine cores are rotated by 60° in alternating layers, thus generating large rhombohedral channels running perpendicular to the planes of the networks. An analogous unsubstituted full-carbon metal framework was synthesised for comparison. The resulting MOF revealed a crystalline 3D entangled porous structure, composed by three mutually interpenetrating networks, hence denser than those obtained from the borazine linkers. Their microporosity and CO2 uptake were investigated, with the porous 3D BN-MOF entangled structure exhibiting a large apparent BET specific surface area (1091 m2 g−1) and significant CO2 reversible adsorption (3.31 mmol g−1) at 1 bar and 273 K

    Ultrapermeable Polymers of Intrinsic Microporosity (PIMs) Containing Spirocyclic Units with Fused Triptycenes

    Get PDF
    Polymers of intrinsic microporosity (PIMs), such as the archetypal spirobisindane-based PIM-1, are among the most promising new materials for making gas separation membranes with high permeance for potential use in high-throughput applications. Here it is shown that ultrapermeable PIMs can be prepared by fusing rigid and bulky triptycene (Trip) to the spirobisindane (SBI) unit. PIM-SBI-Trip and its copolymer with PIM-1 (PIM-1/SBI-Trip) are both ultrapermeable after methanol treatment (PCO2 > 20 000 Barrer). Old films, although less permeable, are more selective and therefore provide data that are close to the recently redefined Robeson upper bounds for the important CO2/CH4, CO2/N2, and O2/N2 gas pairs. Temperature-dependent permeation measurements and analysis of the entropic and energetic contributions of the gas transport parameters show that the enhanced performance of these polymers is governed by strong size-sieving character, mainly due to the energetic term of the diffusivity, and related to their high rigidity. Both polymers show a relatively weak pressure-dependence in mixed gas permeability experiments up to 6 bar, suggesting a potential use for CO2 capture from flue gas or for the upgrading of biogas

    Synthesis and gas permeation properties of tetraoxidethianthrene-based polymers of intrinsic microporosity

    Get PDF
    A series of nine polymers of intrinsic microporosity (PIMs) derived from different bis-catechol monomers and 2,3,7,8-tetrafluoro-5,5′,10,10′-tetraoxidethianthrene (TOT) were synthesised and tested for their potential use as gas separation membranes. As powders, they demonstrate significant nitrogen adsorption at 77 K allowing apparent BET surface areas ranging from 432-785 m2g−1to be calculated. Six of the polymers were found to be soluble in quinoline facilitating the casting of self-standing films to allow the assessment of their gas separation properties. Spirobifluorene-based polymers exhibited the highest gas permeability, approaching the performance of the archetypalPIM-1, and the data for some are placed close to the 2008 Robeson upper bounds for O2/N2and CO2/CH4. Ageing studies showed a gradual decrease in permeability, accompanied by an increase in selectivity that moved the data more-or-less parallel to the Robeson upper bounds. The two polymers with the lowest and highest gas permeability were both tested over the temperature range 25-55 °C and an enhancement in permeability for all gases, with the exception of CO2, was observed along with decreased selectivity for almost all gas pairs. The latter seems to be due to the simultaneous drop in both diffusivity selectivity and solubility selectivity for all gas pairs, but especially those involving CO2, due to a strong decrease in solubility with increasing temperature. The analysis of the energetic and entropic selectivity provides further insight into the remarkable transport properties of PIMs. Overall, the tetraoxidethianthrene unit proves to be a suitable building block for use in PIM synthesis for applications in gas separation membranes and these PIMs have a one to two orders of magnitude higher permeability than more common polysulfones.</p

    Development of efficient aqueous organic redox flow batteries using ion-sieving sulfonated polymer membranes

    Get PDF
    Redox flow batteries using aqueous organic-based electrolytes are promising candidates for developing cost-effective grid-scale energy storage devices. However, a significant drawback of these batteries is the cross-mixing of active species through the membrane, which causes battery performance degradation. To overcome this issue, here we report size-selective ion-exchange membranes prepared by sulfonation of a spirobifluorene-based microporous polymer and demonstrate their efficient ion sieving functions in flow batteries. The spirobifluorene unit allows control over the degree of sulfonation to optimize the transport of cations, whilst the microporous structure inhibits the crossover of organic molecules via molecular sieving. Furthermore, the enhanced membrane selectivity mitigates the crossover-induced capacity decay whilst maintaining good ionic conductivity for aqueous electrolyte solution at pH 9, where the redox-active organic molecules show long-term stability. We also prove the boosting effect of the membranes on the energy efficiency and peak power density of the aqueous redox flow battery, which shows stable operation for about 120 h (i.e., 2100 charge-discharge cycles at 100 mA cm−2) in a laboratory-scale cell
    • …
    corecore