53 research outputs found

    Probing superconducting phase fluctuations from the current noise spectrum of pseudogaped metal-superconductor tunnel junctions

    Full text link
    We study the current noise spectra of a tunnel junction of a metal with strong pairing phase fluctuation and a superconductor. It is shown that there is a characteristic peak in the noise spectrum at the intrinsic Josephson frequency Ο‰J=2eV\omega_J=2eV when Ο‰J\omega_J is smaller than the pairing gap but larger than the pairing scattering rate. In the presence of an AC voltage, the tunnelling current noise shows a series of characteristic peaks with increasing DC voltage. Experimental observation of these peaks will give direct evidence of the pair fluctuation in the normal state of high-TcT_c superconductors and from the half width of the peaks the pair decay rate can be estimated.Comment: 4 pages, 3 figure

    Nonequilibrium electron cooling by NIS tunnel junctions

    Full text link
    We discuss the theoretical framework to describe quasiparticle electric and heat currents in NIS tunnel junctions in the dirty limit. The approach is based on quasiclassical Keldysh-Usadel equations. We apply this theory to diffusive NIS'S tunnel junctions. Here N and S are respectively normal metal and superconductor reservoirs, I is an insulator layer and S' is a nonequilibrium superconducting lead. We calculate the quasiparticle electric and heat currents in such structures and consider the effect of inelastic relaxation in the S' lead. We find that in the absence of strong relaxation the electric current and the cooling power for voltages eV<Ξ”eV < \Delta are suppressed. The value of this suppression scales with the diffusive transparency parameter. We ascribe this suppression to the effect of backtunneling of nonequilibrium quasiparticles into the normal metal.Comment: 12 pages, 6 figures, proceedings, to be published in JLT

    Circuit theory of multiple Andreev reflections in diffusive SNS junctions: the incoherent case

    Full text link
    The incoherent regime of Multiple Andreev Reflections (MAR) is studied in long diffusive SNS junctions at applied voltages larger than the Thouless energy. Incoherent MAR is treated as a transport problem in energy space by means of a circuit theory for an equivalent electrical network. The current through NS interfaces is explained in terms of diffusion flows of electrons and holes through tunnel and Andreev resistors. These resistors in diffusive junctions play roles analogous to the normal and Andreev reflection coefficients in OTBK theory for ballistic junctions. The theory is applied to the subharmonic gap structure (SGS); simple analytical results are obtained for the distribution function and current spectral density for the limiting cases of resistive and transparent NS interfaces. In the general case, the exact solution is found in terms of chain-fractions, and the current is calculated numerically. SGS shows qualitatively different behavior for even and odd subharmonic numbers, and the maximum slopes of the differential resistance correspond to the gap subharmonics. The influence of inelastic scattering on the subgap anomalies of the differential resistance is analyzed.Comment: 14 pages, 9 figures, title and text revised, to appear in PR

    Two-dimensional array of diffusive SNS junctions with high-transparent interfaces

    Full text link
    We report the first comparative study of the properties of two-dimensional arrays and single superconducting film - normal wire - superconducting film (SNS) junctions. The NS interfaces of our SNS junctions are really high transparent, for superconducting and normal metal parts are made from the same material (superconducting polycrystalline PtSi film). We have found that the two-dimensional arrays reveal some novel features: (i) the significant narrowing of the zero bias anomaly (ZBA) in comparison with single SNS junctions, (ii) the appearance of subharmonic energy gap structure (SGS), with up to n=16 (eV=\pm 2\Delta/n), with some numbers being lost, (iii) the transition from 2D logarithmic weak localization behavior to metallic one. Our experiments show that coherent phenomena governed by the Andreev reflection are not only maintained over the macroscopic scale but manifest novel pronounced effects as well. The behavior of the ZBA and SGS in 2D array of SNS junctions strongly suggests that the development of a novel theoretical approach is needed which would self-consistently take into account the distribution of the currents, the potentials, and the superconducting order parameter.Comment: RevTex, 5 pages, 5 figure

    Full Current Statistics in Diffusive Normal-Superconductor Structures

    Full text link
    We study the current statistics in normal diffusive conductors in contact with a superconductor. Using an extension of the Keldysh Green's function method we are able to find the full distribution of charge transfers for all temperatures and voltages. For the non-Gaussian regime, we show that the equilibrium current fluctuations are enhanced by the presence of the superconductor. We predict an enhancement of the nonequilibrium current noise for temperatures below and voltages of the order of the Thouless energy E_Th=D/L^2. Our calculation fully accounts for the proximity effect in the normal metal and agrees with experimental data. We demonstrate that the calculation of the full current statistics is in fact simpler than a concrete calculation of the noise.Comment: 4 pages, 2 figures (included

    Charge and Spin Effects in Mesoscopic Josephson Junctions

    Get PDF
    We consider the charge and spin effects in low dimensional superconducting weak links. The first part of the review deals with the effects of electron-electron interaction in Superconductor/Luttinger liquid/Superconductor junctions. The experimental realization of this mesoscopic hybrid system can be the individual single wall carbon nanotube that bridges the gap between two bulk superconductors. The dc Josephson current through a Luttinger liquid in the limits of perfectly and poorly transmitting junctions is evaluated. The relationship between the Josephson effect in a long SNS junction and the Casimir effect is discussed. In the second part of the paper we review the recent results concerning the influence of the Zeeman and Rashba interactions on the thermodynamical properties of ballistic S/QW/S junction fabricated in two dimensional electron gas. It is shown that in magnetically controlled junction there are conditions for resonant Cooper pair transition which results in giant supercurrent through a tunnel junction and a giant magnetic response of a multichannel SNS junction. The supercurrent induced by the joint action of the Zeeman and Rashba interactions in 1D quantum wires connected to bulk superconductors is predicted.Comment: 36 pages, 8 figures; minor changes in reference

    ОбоснованиС Π²Ρ‹Π±ΠΎΡ€Π° ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΡΠ»Π»ΠΈΠΏΡΠΎΠΈΠ΄Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅Ρ„Π»Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² биомСдицинских Ρ„ΠΎΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΎΠ²

    Get PDF
    Biomedical photometersΚΌ information-measuring systems with ellipsoidal reflectors have acceptable results in determining of biological tissues optical properties in the visible and near-infrared spectral range. These photometers make it possible to study the optical radiation propagation in turbid media for direct and inverse problems of light-scattering optics. The purpose of this work is to study the influence of the ellipsoidal reflectors design parameters on the results of biomedical photometry when simulating the optical radiation propagation in a system of biological tissue and reflectors in transmitted and reflected light.The paper substantiates the choice of the ellipsoidal reflectors’ focal parameter for efficient registration of forward and backscattered light. The methodology of the process is illustrated by the results of a model experiment using the Monte Carlo simulation for samples of human brain white and gray matter at the visible range of 405 nm, 532 nm, and 650 nm. The total transmittance, diffuse reflectance, and absorption graphs depending on the sample thickness were obtained. Based on the introduced concepts of the ellipsoidal reflector efficiency index and its efficiency factor, the expediency of choosing the ellipsoidal reflectors focal parameter is analyzed to ensure the registration of the maximum amount of scattered light. The graphs of efficiency index in reflected and transmitted light for different thickness samples of white and gray matter and efficiency factors depending on the sample thickness were obtained.The influence of the reflectors ellipticity on the illuminance of various zones of photometric images using the example of an absorbing biological medium – pig liver tissue – at wavelength of 405 nm with a Monte Carlo simulation was analyzed.The optical properties of biological media (scattering and absorption coefficients, scattering anisotropy factor, refractive index) and the samples’ geometric dimensions, particularly the thickness, are predetermined when choosing the ellipsoidal reflectors parameters for registration of the scattered light. Coordinates of the output of photons and their statistical weight obtained in the Monte Carlo simulation of light propagation in biological tissue have a physical effect on a characteristic scattering spot formation in the receiving plane of a biomedical photometer with ellipsoidal reflectors.Π˜Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎ-ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ систСмы биомСдицинских Ρ„ΠΎΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΎΠ² с ΡΠ»Π»ΠΈΠΏΡΠΎΠΈΠ΄Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Ρ€Π΅Ρ„Π»Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ ΠΏΡ€ΠΈΠ΅ΠΌΠ»Π΅ΠΌΡ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ оптичСских свойств биологичСских Ρ‚ΠΊΠ°Π½Π΅ΠΉ Π² Π²ΠΈΠ΄ΠΈΠΌΠΎΠΌ ΠΈ Π±Π»ΠΈΠΆΠ½Π΅ΠΌ инфракрасном ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅. Π’Π°ΠΊΠΈΠ΅ Ρ„ΠΎΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€Ρ‹ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ распространСниС оптичСского излучСния Π² ΠΌΡƒΡ‚Π½Ρ‹Ρ… срСдах ΠΏΡ€ΠΈ прямой ΠΈ инвСрсной Π·Π°Π΄Π°Ρ‡Π°Ρ… ΠΎΠΏΡ‚ΠΈΠΊΠΈ свСторассСяния. ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ являлось исслСдованиС влияния конструктивных ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΡΠ»Π»ΠΈΠΏΡΠΎΠΈΠ΄Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅Ρ„Π»Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π½Π° Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ биомСдицинской Ρ„ΠΎΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΏΡ€ΠΈ симуляции распространСния оптичСского излучСния Π² систСмС биологичСской Ρ‚ΠΊΠ°Π½ΠΈ ΠΈ Ρ€Π΅Ρ„Π»Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ².Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ обоснован Π²Ρ‹Π±ΠΎΡ€ Ρ„ΠΎΠΊΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° ΡΠ»Π»ΠΈΠΏΡΠΎΠΈΠ΄Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅Ρ„Π»Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² для эффСктивной рСгистрации рассСянного Π²ΠΏΠ΅Ρ€Ρ‘Π΄ ΠΈ Π½Π°Π·Π°Π΄ свСта. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° процСсса ΠΏΡ€ΠΎΠΈΠ»Π»ΡŽΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½Π° Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ модСльного экспСримСнта ΠΏΡ€ΠΈ использовании ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠœΠΎΠ½Ρ‚Π΅-ΠšΠ°Ρ€Π»ΠΎ для ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² Π±Π΅Π»ΠΎΠ³ΠΎ ΠΈ сСрого вСщСства ΠΌΠΎΠ·Π³Π° Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Π½Π° Π΄Π»ΠΈΠ½Π°Ρ… Π²ΠΎΠ»Π½ Π²ΠΈΠ΄ΠΈΠΌΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° 405 Π½ΠΌ, 532 Π½ΠΌ ΠΈ 650 Π½ΠΌ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ зависимости ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ пропускания, Π΄ΠΈΡ„Ρ„ΡƒΠ·Π½ΠΎΠ³ΠΎ отраТСния ΠΈ поглощСния Π² зависимости ΠΎΡ‚ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ исслСдуСмого ΠΎΠ±Ρ€Π°Π·Ρ†Π°. На основС Π²Π²Π΅Π΄Ρ‘Π½Π½Ρ‹Ρ… понятий показатСля эффСктивности ΠΈ коэффициСнта эффСктивности ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π° Ρ†Π΅Π»Π΅ΡΠΎΠΎΠ±Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π²Ρ‹Π±ΠΎΡ€Π° Ρ„ΠΎΠΊΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° ΡΠ»Π»ΠΈΠΏΡΠΎΠΈΠ΄Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅Ρ„Π»Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² для обСспСчСния рСгистрации максимального количСства рассСянного свСта. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ эффСктивности Π² ΠΎΡ‚Ρ€Π°ΠΆΡ‘Π½Π½ΠΎΠΌ ΠΈ ΠΏΡ€ΠΎΡˆΠ΅Π΄ΡˆΠ΅ΠΌ свСтС для Ρ€Π°Π·Π½ΠΎΡ‚ΠΎΠ»Ρ‰ΠΈΠ½Π½Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² Π±Π΅Π»ΠΎΠ³ΠΎ ΠΈ сСрого вСщСств, Π° Ρ‚Π°ΠΊΠΆΠ΅ коэффициСнтов эффСктивности Π² зависимости ΠΎΡ‚ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ ΠΎΠ±Ρ€Π°Π·Ρ†Π°. ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½ΠΎ влияниС эллиптичности Ρ€Π΅Ρ„Π»Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π½Π° ΠΎΡΠ²Π΅Ρ‰Ρ‘Π½Π½ΠΎΡΡ‚ΡŒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π·ΠΎΠ½ фотомСтричСских ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ ΠΏΠΎΠ³Π»ΠΎΡ‰Π°ΡŽΡ‰Π΅ΠΉ биологичСской срСды – Ρ‚ΠΊΠ°Π½ΠΈ ΠΏΠ΅Ρ‡Π΅Π½ΠΈ свиньи – Π½Π° Π΄Π»ΠΈΠ½Π΅ Π²ΠΎΠ»Π½Ρ‹ 405 Π½ΠΌ ΠΏΡ€ΠΈ симуляции ΠœΠΎΠ½Ρ‚Π΅-ΠšΠ°Ρ€Π»ΠΎ.ΠžΠΏΡ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ свойства биологичСских срСд (коэффициСнты рассСяния ΠΈ поглощСния, коэффициСнт Π°Π½ΠΈΠ·ΠΎΡ‚Ρ€ΠΎΠΏΠΈΠΈ рассСяния, ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒ прСломлСния) ΠΈ гСомСтричСскиС Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ², Π² частности Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Π°, ΠΏΡ€Π΅Π΄ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ Π²Ρ‹Π±ΠΎΡ€ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΡΠ»Π»ΠΈΠΏΡΠΎΠΈΠ΄Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅Ρ„Π»Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² для рСгистрации рассСянного свСта. ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Ρ‹Ρ…ΠΎΠ΄Π° Ρ„ΠΎΡ‚ΠΎΠ½ΠΎΠ² ΠΈ ΠΈΡ… статистичСский вСс, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΏΡ€ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ распространСния свСта Π² биологичСской Ρ‚ΠΊΠ°Π½ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠœΠΎΠ½Ρ‚Π΅-ΠšΠ°Ρ€Π»ΠΎ, ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ физичСскоС влияниС Π½Π° Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½ΠΎΠ³ΠΎ пятна рассСяния Π² ΠΏΡ€ΠΈΡ‘ΠΌΠ½ΠΎΠΉ плоскости биомСдицинского Ρ„ΠΎΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€Π°
    • …
    corecore