13 research outputs found
Phase diagram and tie-line determination for the ternary mixture DOPC/eSM/cholesterol
We propose a novel, to our knowledge, method for the determination of tie lines in a phase diagram of ternary lipid mixtures. The method was applied to a system consisting of dioleoylphosphatidylcholine (DOPC), egg sphingomyelin (eSM), and cholesterol (Chol). The approach is based on electrofusion of single- or two-component homogeneous giant vesicles in the fluid phase and analyses of the domain areas of the fused vesicle. The electrofusion approach enables us to create three-component vesicles with precisely controlled composition, in contrast to conventional methods for giant vesicle formation. The tie lines determined in the two-liquid-phase coexistence region are found to be not parallel, suggesting that the dominant mechanism of lipid phase separation in this region changes with the membrane composition. We provide a phase diagram of the DOPC/eSM/Chol mixture and predict the location of the critical point. Finally, we evaluate the Gibbs free energy of transfer of individual lipid components from one phase to the other
A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy
Research on giant vesicles is becoming increasingly popular. Giant vesicles provide model biomembrane systems for systematic measurements of mechanical and rheological properties of bilayers as a function of membrane composition and temperature, as well as hydrodynamic interactions. Membrane response to external factors (for example electric fields, ions and amphiphilic molecules) can be directly visualized under the microscope. In this paper we review our current understanding of lipid bilayers as obtained from studies on giant unilamellar vesicles. Because research on giant vesicles increasingly attracts the interest of scientists from various backgrounds, we also try to provide a concise introduction for newcomers in the field. Finally, we summarize some recent developments on curvature effects induced by polymers, domain formation in membranes and shape transitions induced by electric fields. (Some figures in this article are in colour only in the electronic version) 1