25 research outputs found

    Genetic mapping of high caries experience on human chromosome 13

    Get PDF
    Background: Our previous genome-wide linkage scan mapped five loci for caries experience. The purpose of this study was to fine map one of these loci, the locus 13q31.1, in order to identify genetic contributors to caries.Methods: Seventy-two pedigrees from the Philippines were studied. Caries experience was recorded and DNA was extracted from blood samples obtained from all subjects. Sixty-one single nucleotide polymorphisms (SNPs) in 13q31.1 were genotyped. Association between caries experience and alleles was tested. We also studied 1,481 DNA samples obtained from saliva of subjects from the USA, 918 children from Brazil, and 275 children from Turkey, in order to follow up the results found in the Filipino families. We used the AliBaba2.1 software to determine if the nucleotide changes of the associated SNPs changed the prediction of the presence of transcription-binding site sequences and we also analyzed the gene expression of the genes selected based on binding predictions. Mutation analysis was also performed in 33 Filipino individuals of a segment of 13q31.1 that is highly conserved in mammals.Results: Statistically significant association with high caries experience was found for 11 markers in 13q31.1 in the Filipino families. Haplotype analysis also confirmed these results. In the populations used for follow-up purposes, associations were found between high caries experience and a subset of these markers. Regarding the prediction of the transcription-binding site, the base change of the SNP rs17074565 was found to change the predicted-binding of genes that could be involved in the pathogenesis of caries. When the sequence has the allele C of rs17074565, the potential transcription factors binding the sequence are GR and GATA1. When the subject carries the G allele of rs17074565, the potential transcription factor predicted to bind to the sequence is GATA3. The expression of GR in whole saliva was higher in individuals with low caries experience when compared to individuals with high caries experience (p = 0.046). No mutations were found in the highly conserved sequence.Conclusions: Genetic factors contributing to caries experience may exist in 13q31.1. The rs17074565 is located in an intergenic region and is predicted to disrupt the binding sites of two different transcription factors that might be involved with caries experience. GR expression in saliva may be a biomarker for caries risk and should be further explored. © 2013 Küchler et al.; licensee BioMed Central Ltd

    Biomarkers for Lifetime Caries-Free Status

    No full text
    The purpose of this study was to address the hypothesis that extreme outcomes of dental caries, such as edentulism or prematurely losing permanent teeth are associated with genetic variation in enamel-formation genes. After scanning 6206 individuals, samples of 330 were selected for this study. Tested phenotypes included patients who were edentulous by age 30, patients with missing first molars by age 30, patients with missing second molars by age 30, and caries-free patients. Fourteen single nucleotide polymorphisms were genotyped by TaqMan chemistry. The analyses of each phenotype were performed using the software PLINK with an alpha of 0.05. Nominal associations were found between rs12640848 in enamelin (p = 0.05), rs1784418 in matrix metallopeptidase 20 (p = 0.02), and rs5997096 in the tuftelin interacting protein 11 and being caries-free at the age of 60. When combining patients that were missing both first mandibular molars and missing both second mandibular molars, no associations were found. Matrix metallopeptidase 20, and tuftelin interacting protein 11 also showed trends for association with being caries-free. Genetic variation in TFIP11, MMP20, and ENAM may have a protective effect increasing the chances of individuals preserving their teeth caries-free over a lifetime

    Homophily around specialized foraging underlies dolphin social preferences

    No full text
    Individuals often associate socially with those who behave the same way. This principle, homophily, could structure populations into distinct social groups. We tested this hypothesis in a bottlenose dolphin population that appeared to be clustered around a specialized foraging tactic involving cooperation with net-casting fishermen, but in which other potential drivers of such social structure have never been assessed. We measured and controlled for the contribution of sex, age, genetic relatedness, home range and foraging tactics on social associations to test for homophily effects. Dolphins tended to group with others having similar home ranges and frequency of using the specialized foraging tactic, but not other traits. Such social preferences were particularly clear when dolphins were not foraging, showing that homophily extends beyond simply participating in a specific tactic. Combined, these findings highlight the need to account for multiple drivers of group formation across behavioural contexts to determine true social affiliations. We suggest that homophily around behavioural specialization can be a major driver of social patterns, with implications for other social processes. If homophily based on specialized tactics underlies animal social structures more widely, then it may be important in modulating opportunities for social learning, and therefore influence patterns of cultural transmission

    Gene-environment interaction in molar-incisor hypomineralization

    Get PDF
    Molar incisor hypomineralization (MIH) is an enamel condition characterized by lesions ranging in color from white to brown which present rapid caries progression, and mainly affects permanent first molars and incisors. These enamel defects usually occur when there are disturbances during the mineralization or maturation stage of amelogenesis. Both genetic and environmental factors have been suggested to play roles in MIH’s development, but no conclusive risk factors have shown the source of the disease. During head and neck development, the interferon regulatory factor 6 (IRF6) gene is involved in the structure formation of the oral and maxillofacial regions, and the transforming growth factor alpha (TGFA) is an essential cell regulator, acting during proliferation, differentiation, migration and apoptosis. In this present study, it was hypothesized that these genes interact and contribute to predisposition of MIH. Environmental factors affecting children that were 3 years of age or older were also hypothesized to play a role in the disease etiology. Those factors included respiratory issues, malnutrition, food intolerance, infection of any sort and medication intake. A total of 1,065 salivary samples from four different cohorts were obtained, and DNA was extracted from each sample and genotyped for nine different single nucleotide polymorphisms. Association tests and logistic regression implemented in PLINK were used for analyses. A potential interaction between TGFA rs930655 with all markers tested in the cohort from Turkey was identified. These interactions were not identified in the remaining cohorts. Associations (p<0.05) between the use of medication after three years of age and MIH were also found, suggesting that conditions acquired at the age children start to socialize might contribute to the development of MIH.Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro (FAPERJ)CAPESUniversity of Pittsburgh School of Dental Medicine Dean's Summer Research programFundacao Araucari

    Genetic mapping of high caries experience on human chromosome 13

    No full text
    Background: Our previous genome-wide linkage scan mapped five loci for caries experience. The purpose of this study was to fine map one of these loci, the locus 13q31.1, in order to identify genetic contributors to caries

    Fine mapping of locus Xq25.1-27-2 for a low caries experience phenotype

    No full text
    Objective: The purpose of this study was to fine map the locus Xq25.1-27-2 in order to identify genetic contributors involved in low caries experience. Design: Seventy-two families from the Philippines were studied. Caries experience was recorded and genomic DNA extracted from peripheral blood was obtained from all subjects. One hundred and twenty-eight polymorphisms in the locus Xq25.1-27-2, a region that contains 24 genes, were genotyped. Association between caries experience and alleles was tested using the transmission disequilibrium test (TOT). This initial analysis was followed by experiments with DNA samples from 1481 subjects from Pittsburgh, 918 children from Brazil, and 275 children from Turkey in order to follow up the results found in the Filipino families. Chi-square or Fisher's exact tests were used. Sequencing of the coding regions and exon-intron boundaries of MST4 and FGF13 were also performed on 91 women from Pittsburgh. Results: Statistically significant association with low caries experience was found for 11 markers in Xq25.1-27-2 in the Filipino families. One marker was in MST4, another marker was in FGF13, and the remaining markers were in intergenic regions. Haplotype analysis also confirmed these results, but the follow up studies with DNA samples from Pittsburgh, Brazil, and Turkey showed associations for a subset of the 11 markers. No coding mutations were identified by sequencing. Conclusions: Our study failed to conclusively demonstrate that genetic factors in Xq25.1-27-2 contribute to caries experience in multiple populations. (C) 2014 Elsevier Ltd. All rights reserved.NIH/NIDCR Gran
    corecore