30 research outputs found

    Boehmite sorbs perrhenate and pertechnetate

    Full text link

    Cerebral gene expression in response to single or combined gestational exposure to methylmercury and selenium through the maternal diet

    Get PDF
    Controversy remains regarding the safety of consuming certain types of seafood, particularly during pregnancy. While seafood is rich in vital nutrients, it may also be an important source of environmental contaminants such as methylmercury (MeHg). Selenium (Se) is one essential element present in seafood, hypothesised to ameliorate MeHg toxicity. The aim of the present study was to ascertain the impact of Se on MeHg-induced cerebral gene expression in a mammalian model. Microarray analysis was performed on brain tissue from 15-day-old mice that had been exposed to MeHg throughout development via the maternal diet. The results from the microarray analysis were validated using qPCR. The exposure groups included: MeHg alone (2.6 mg kg−1), Se alone (1.3 mg kg−1), and MeHg + Se. MeHg was presented in a cysteinate form, and Se as Se–methionine, one of the elemental species occurring naturally in seafood. Eight genes responded to Se exposure alone, five were specific to MeHg, and 63 were regulated under the concurrent exposure of MeHg and Se. Significantly enriched functional classes relating to the immune system and cell adhesion were identified, highlighting potential ameliorating mechanisms of Se on MeHg toxicity. Key developmental genes, such as Wnt3 and Sparcl1, were also identified as putative ameliorative targets. This study, utilising environmentally realistic forms of toxicants, delivered through the natural route of exposure, in association with the power of transcriptomics, highlights significant novel information regarding putative pathways of selenium and MeHg interaction in the mammalian brain

    Coordination of Adsorbed Boron: A FTIR Spectroscopic Study

    Get PDF
    We studied B adsorption on amorphous aluminum and iron hydroxides, allophane, and kaolinite as a function of pH and initial B concentration. Boron adsorption lowered the point of zero charge of all four adsorbents, implying specific adsorption (inner-sphere complexation) of B. We provided novel information on the coordination of B adsorbed at mineral-water interfaces by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. The ATR-FTIR spectra of interfacial B species were influenced by pH and mineral type. Strong trigonal B and weak tetrahedral B bands of the asymmetric stretching mode were observed on the difference spectra at pH ≈7 for amorphous iron hydroxide, whereas both strong trigonal and tetrahedral B bands were found at pH ≈10 . A strong IR band of asymmetric stretching of tetrahedral B shifted to higher frequencies in am-Fe(OH)3 paste at both pH’s relative to that of boric acid solution at pH 11. Trigonal B asymmetric stretching bands shifted to higher frequencies on the difference spectra for am-AI(OH)3 and allophane at both pH’s compared to that of boric acid solution at pH 7. Polymerization of B on mineral surfaces is shown to be possible. The results provide spectroscopic evidence that both B(OH)3 and B(OH)4- are adsorbed via a ligand exchange mechanism

    Diffusive gas transport through flooded rice systems

    Get PDF
    A fully mechanistic model based on diffusion equations for gas transport in a flooded rice system is presented. The model has transport descriptions for various compartments in the water-saturated soil and within the plant. Plant parameters were estimated from published data and experiments independent of the validation experiment. An independent experiment is described in which the diffusion coefficient of sulfurhexafluoride (SF6) in water-saturated soil was determined. The model was validated by experiments in which transport of SF6 through soil and plant was monitored continuously by photoacoustics. The independent default settings could reasonably predict gas release dynamics in the soil-plant system. Calculated transmissivities and concentration gradients at the default settings show that transport within the soil was the most limiting step in this system, which explains why most gases are released via plant-mediated transport. The root-shoot interface represents the major resistance for gas transport within the plant. A sensitivity analysis of the model showed that gas transport in such a system is highly sensitive to the estimation of the diffusion coefficient of SF6, which helps to understand diel patterns found for greenhouse gas emissions, and to the root distribution with depth. This can be understood from the calculated transmissivities. The model is less sensitive to changes in the resistance at the root-shoot interface and in the root fraction active in gas exchange. The model thus provides an understanding of limiting steps in gas transport, but quantitative predictions of in situ gas transport rates will be difficult given the plasticity of root distribution
    corecore