23 research outputs found

    Sonlicromanol's active metabolite KH176m normalizes prostate cancer stem cell mPGES-1 overexpression and inhibits cancer spheroid growth

    Get PDF
    Aggressiveness of cancers, like prostate cancer, has been found to be associated with elevated expression of the microsomal prostaglandin E synthase-1 (mPGES-1). Here, we investigated whether KH176m (the active metabolite of sonlicromanol), a recently discovered selective mPGES-1 inhibitor, could affect prostate cancer cells-derived spheroid growth. We demonstrated that KH176m suppressed mPGES-1 expression and growth of DU145 (high mPGES-1 expression)-derived spheroids, while it had no effect on the LNCaP cell line, which has low mPGES-1 expression. By addition of exogenous PGE(2), we found that the effect of KH176m on mPGES-1 expression and spheroid growth is due to the inhibition of a PGE(2)-driven positive feedback control-loop of mPGES-1 transcriptional regulation. Cancer stem cells (CSCs) are a subset of cancer cells exhibiting the ability of self-renewal, plasticity, and initiating and maintaining tumor growth. Our data shows that mPGES-1 is specifically expressed in this CSCs subpopulation (CD44(+)CD24(-)). KH176m inhibited the expression of mPGES-1 and reduced the growth of spheroids derived from the CSC. Based on the results obtained we propose selective mPGES-1 targeting by the sonlicromanol metabolite KH176m as a potential novel treatment approach for cancer patients with high mPGES-1 expression

    Rescue from galactose-induced death of Leigh Syndrome patient cells by pyruvate and NAD()

    Get PDF
    Contains fulltext : 200367.pdf (publisher's version ) (Open Access)Cell models of mitochondrial complex I (CI) deficiency display activation of glycolysis to compensate for the loss in mitochondrial ATP production. This adaptation can mask other relevant deficiency-induced aberrations in cell physiology. Here we investigated the viability, mitochondrial morphofunction, ROS levels and ATP homeostasis of primary skin fibroblasts from Leigh Syndrome (LS) patients with isolated CI deficiency. These cell lines harbored mutations in nuclear DNA (nDNA)-encoded CI genes (NDUFS7, NDUFS8, NDUFV1) and, to prevent glycolysis upregulation, were cultured in a pyruvate-free medium in which glucose was replaced by galactose. Following optimization of the cell culture protocol, LS fibroblasts died in the galactose medium, whereas control cells did not. LS cell death was dose-dependently inhibited by pyruvate, malate, oxaloacetate, alpha-ketoglutarate, aspartate, and exogenous NAD(+) (eNAD), but not by lactate, succinate, alpha-ketobutyrate, and uridine. Pyruvate and eNAD increased the cellular NAD(+) content in galactose-treated LS cells to a different extent and co-incubation studies revealed that pyruvate-induced rescue was not primarily mediated by NAD(+). Functionally, in LS cells glucose-by-galactose replacement increased mitochondrial fragmentation and mass, depolarized the mitochondrial membrane potential (Deltapsi), increased H2DCFDA-oxidizing ROS levels, increased mitochondrial ATP generation, and reduced the total cellular ATP content. These aberrations were differentially rescued by pyruvate and eNAD, supporting the conclusion that these compounds rescue galactose-induced LS cell death via different mechanisms. These findings establish a cell-based strategy for intervention testing and enhance our understanding of CI deficiency pathophysiology

    The effect of exercise training on the kinetics of the antibody response to influenza vaccination

    No full text
    While often presented as a single entity, mitochondrial diseases comprise a wide range of clinical, biochemical and genetic heterogeneous disorders. Among them, defects in the process of oxidative phosphorylation are the most prevalent. Despite intense research efforts, patients are still without effective treatment. An important part of the development of new therapeutics relies on predictive models of the pathology in order to assess their therapeutic potential. Since mitochondrial diseases are a heterogeneous group of progressive multisystemic disorders that can affect any organ at any time, the development of various in vivo models for the different diseases-associated genes defects will accelerate the search for effective therapeutics. Here, we review existing Drosophila melanogaster models for mitochondrial diseases, with a focus on alterations in oxidative phosphorylation, and discuss the potential of this powerful model organism in the process of drug target discovery. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies

    Multiplexed high-content analysis of mitochondrial morphofunction using live-cell microscopy

    No full text
    Contains fulltext : 165715.pdf (publisher's version ) (Closed access)Mitochondria have a central role in cellular (patho)physiology, and they display a highly variable morphology that is probably coupled to their functional state. Here we present a protocol that allows unbiased and automated quantification of mitochondrial 'morphofunction' (i.e., morphology and membrane potential), cellular parameters (size, confluence) and nuclear parameters (number, morphology) in intact living primary human skin fibroblasts (PHSFs). Cells are cultured in 96-well plates and stained with tetramethyl rhodamine methyl ester (TMRM), calcein-AM (acetoxy-methyl ester) and Hoechst 33258. Next, multispectral fluorescence images are acquired using automated microscopy and processed to extract 44 descriptors. Subsequently, the descriptor data are subjected to a quality control (QC) algorithm based upon principal component analysis (PCA) and interpreted using univariate, bivariate and multivariate analysis. The protocol requires a time investment of approximately 4 h distributed over 2 d. Although it is specifically developed for PHSFs, which are widely used in preclinical research, the protocol is portable to other cell types and can be scaled up for implementation in high-content screening

    Mitochondrial Migraine: Disentangling the angiopathy paradigm in m.3243A>G patients

    Get PDF
    Contains fulltext : 206787.pdf (publisher's version ) (Open Access)Migraine, characterized by recurrent attacks of predominantly unilateral throbbing headache, affects approximately 15% of the adult population and is an important cause of disability worldwide. Knowledge required for the development of new classes of antimigraine drugs might come from studying rare metabolic diseases associated with migraine. An illustrative example of a monogenetic disorder associated with migraine is the spectrum of disorders caused by the m.3243A>G mutation in the mitochondrial transfer RNA Leucine. Reported migraine prevalence figures in patients with this particular mutation vary considerably, but compared to the general population, m.3243A>G patients have a higher migraine prevalence. This burdensome symptom might sometimes even be the only clinical feature in maternal relatives carrying the m.3243A>G mutation. Although the exact sequence of events and the relative importance of factors underlying migraine in m.3243A>G MELAS spectrum disorders are still enigmatic, substantial evidence in man exist that dysfunctional mitochondria in both the vascular, the smooth muscle cells and the neuronal system and the interaction between these are at the starting point of the migraine developing pathophysiological cascade. Exclusively based on results of studies performed in patients harboring the m.3243A>G mutation, either in vivo or ex vivo, we here summarize our current understanding of mitochondrial angiopathy associated migraine in m.3243A>G patients which knowledge might lead to potential new avenues for migraine drug development

    Ligand dimerization programmed by hybridization to study multimeric ligand-receptor interactions.

    No full text
    Item does not contain fulltextOligomerization of receptors induced or stabilized by polyvalent ligands is a fundamental mechanism in cellular recognition and signal transduction. Herein we report a general approach to encode complex peptide macrocycles with peptide nucleic acid (PNA) tags and program their oligomerization through hybridization as exemplified with a ligand binding to oligomeric DR5, a receptor of TRAIL cytokine

    Live-Imaging Readouts and Cell Models for Phenotypic Profiling of Mitochondrial Function

    Get PDF
    Mitochondria are best known as the powerhouses of the cells but their cellular role goes far beyond energy production; among others, they have a pivotal function in cellular calcium and redox homeostasis. Mitochondrial dysfunction is often associated with severe and relatively rare disorders with an unmet therapeutic need. Given their central integrating role in multiple cellular pathways, mitochondrial dysfunction is also relevant in the pathogenesis of various other, more common, human pathologies. Here we discuss how live-cell high content microscopy can be used for image-based phenotypic profiling to assess mitochondrial (dys) function. From this perspective, we discuss a selection of live-cell fluorescent reporters and imaging strategies and discuss the pros/cons of human cell models in mitochondrial research. We also present an overview of live-cell high content microscopy applications used to detect disease-associated cellular phenotypes and perform cell-based drug screening

    Feeding difficulties, a key feature of the Drosophila NDUFS4 mitochondrial disease model

    Get PDF
    Mitochondrial diseases are associated with a wide variety of clinical symptoms and variable degrees of severity. Patients with such diseases generally have a poor prognosis and often an early fatal disease outcome. With an incidence of 1 in 5000 live births and no curative treatments available, relevant animal models to evaluate new therapeutic regimes for mitochondrial diseases are urgently needed. By knocking down ND-18, the unique Drosophila ortholog of NDUFS4, an accessory subunit of the NADH:ubiquinone oxidoreductase (Complex I), we developed and characterized several dNDUFS4 models that recapitulate key features of mitochondrial disease. Like in humans, the dNDUFS4 KD flies display severe feeding difficulties, an aspect of mitochondrial disorders that has so far been largely ignored in animal models. The impact of this finding, and an approach to overcome it, will be discussed in the context of interpreting disease model characterization and intervention studies.This article has an associated First Person interview with the first author of the paper

    Mitochondrial Migraine: Disentangling the angiopathy paradigm in m.3243A>G patients

    No full text
    Migraine, characterized by recurrent attacks of predominantly unilateral throbbing headache, affects approximately 15% of the adult population and is an important cause of disability worldwide. Knowledge required for the development of new classes of antimigraine drugs might come from studying rare metabolic diseases associated with migraine. An illustrative example of a monogenetic disorder associated with migraine is the spectrum of disorders caused by the m.3243A>G mutation in the mitochondrial transfer RNA Leucine. Reported migraine prevalence figures in patients with this particular mutation vary considerably, but compared to the general population, m.3243A>G patients have a higher migraine prevalence. This burdensome symptom might sometimes even be the only clinical feature in maternal relatives carrying the m.3243A>G mutation. Although the exact sequence of events and the relative importance of factors underlying migraine in m.3243A>G MELAS spectrum disorders are still enigmatic, substantial evidence in man exist that dysfunctional mitochondria in both the vascular, the smooth muscle cells and the neuronal system and the interaction between these are at the starting point of the migraine developing pathophysiological cascade. Exclusively based on results of studies performed in patients harboring the m.3243A>G mutation, either in vivo or ex vivo, we here summarize our current understanding of mitochondrial angiopathy associated migraine in m.3243A>G patients which knowledge might lead to potential new avenues for migraine drug development

    Toward high-content screening of mitochondrial morphology and membrane potential in living cells

    No full text
    Mitochondria are double membrane organelles involved in various key cellular processes. Governed by dedicated protein machinery, mitochondria move and continuously fuse and divide. These "mitochondrial dynamics" are bi-directionally linked to mitochondrial and cell functional state in space and time. Due to the action of the electron transport chain (ETC), the mitochondrial inner membrane displays a inside-negative membrane potential (Deltapsi). The latter is considered a functional readout of mitochondrial "health" and required to sustain normal mitochondrial ATP production and mitochondrial fusion. During the last decade, live-cell microscopy strategies were developed for simultaneous quantification of Deltapsi and mitochondrial morphology. This revealed that ETC dysfunction, changes in Deltapsi and aberrations in mitochondrial structure often occur in parallel, suggesting they are linked potential targets for therapeutic intervention. Here we discuss how combining high-content and high-throughput strategies can be used for analysis of genetic and/or drug-induced effects at the level of individual organelles, cells and cell populations. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies
    corecore