22 research outputs found

    What change in body mass index is needed to improve metabolic health status in childhood obesity:protocol for a systematic review

    Get PDF
    PRISMA-P (Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols) 2015 checklist: recommended items to address in a systematic review protocol*. PRISMA is an evidence-based minimum set of items for reporting in systematic reviews and meta-analyses. (DOC 80.5 kb

    Does testosterone mediate the relationship between vitamin D and prostate cancer progression? A systematic review and meta-analysis

    Get PDF
    PURPOSE: Observational studies and randomized controlled trials (RCTs) have shown an association between vitamin D levels and prostate cancer progression. However, evidence of direct causality is sparse and studies have not examined biological mechanisms, which can provide information on plausibility and strengthen the evidence for causality. METHODS: We used the World Cancer Research Fund International/University of Bristol two-stage framework for mechanistic systematic reviews. In stage one, both text mining of published literature and expert opinion identified testosterone as a plausible biological mechanism. In stage two, we performed a systematic review and meta-analysis to assess the evidence from both human and animal studies examining the effect of vitamin D on testosterone, and testosterone on advanced prostate cancer (diagnostic Gleason score of ≥ 8, development of metastasis) or prostate cancer-specific mortality. RESULTS: A meta-analysis of ten human RCTs showed evidence of an effect of vitamin D on total testosterone (standardised mean difference (SMD) = 0.133, 95% CI =  − 0.003–0.269, I(2) = 0.0%, p = 0.056). Five human RCTs showed evidence of an effect of vitamin D on free testosterone (SMD = 0.173, 95% CI =  − 0.104–0.450, I(2) = 52.4%, p = 0.220). Three human cohort studies of testosterone on advanced prostate cancer or prostate cancer-specific mortality provided inconsistent results. In one study, higher levels of calculated free testosterone were positively associated with advanced prostate cancer or prostate cancer-specific mortality. In contrast, higher levels of dihydrotestosterone were associated with lowering prostate cancer-specific mortality in another study. No animal studies met the study eligibility criteria. CONCLUSION: There is some evidence that vitamin D increases levels of total and free testosterone, although the effect of testosterone levels within the normal range on prostate cancer progression is unclear. The role of testosterone as a mechanism between vitamin D and prostate cancer progression remains inconclusive. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10552-022-01591-w

    Epigenetic prediction of complex traits and mortality in a cohort of individuals with oropharyngeal cancer

    Get PDF
    Background: DNA methylation (DNAm) variation is an established predictor for several traits. In the context of oropharyngeal cancer (OPC), where 5-year survival is ~ 65%, DNA methylation may act as a prognostic biomarker. We examined the accuracy of DNA methylation biomarkers of 4 complex exposure traits (alcohol consumption, body mass index [BMI], educational attainment and smoking status) in predicting all-cause mortality in people with OPC. Results: DNAm predictors of alcohol consumption, BMI, educational attainment and smoking status were applied to 364 individuals with OPC in the Head and Neck 5000 cohort (HN5000; 19.6% of total OPC cases in the study), followed up for median 3.9 years; inter-quartile range (IQR) 3.3 to 5.2 years (time-to-event—death or censor). The proportion of phenotypic variance explained in each trait was as follows: 16.5% for alcohol consumption, 22.7% for BMI, 0.4% for educational attainment and 51.1% for smoking. We then assessed the relationship between each DNAm predictor and all-cause mortality using Cox proportional-hazard regression analysis. DNAm prediction of smoking was most consistently associated with mortality risk (hazard ratio [HR], 1.38 per standard deviation (SD) increase in smoking DNAm score; 95% confidence interval [CI] 1.04 to 1.83; P 0.025, in a model adjusted for demographic, lifestyle, health and biological variables). Finally, we examined the accuracy of each DNAm predictor of mortality. DNAm predictors explained similar levels of variance in mortality to self-reported phenotypes. Receiver operator characteristic (ROC) curves for the DNAm predictors showed a moderate discrimination of alcohol consumption (area under the curve [AUC] 0.63), BMI (AUC 0.61) and smoking (AUC 0.70) when predicting mortality. The DNAm predictor for education showed poor discrimination (AUC 0.57). Z tests comparing AUCs between self-reported phenotype ROC curves and DNAm score ROC curves did not show evidence for difference between the two (alcohol consumption P 0.41, BMI P 0.62, educational attainment P 0.49, smoking P 0.19). Conclusions: In the context of a clinical cohort of individuals with OPC, DNAm predictors for smoking, alcohol consumption, educational attainment and BMI exhibit similar predictive values for all-cause mortality compared to self-reported data. These findings may have translational utility in prognostic model development, particularly where phenotypic data are not available

    Epigenetic biomarkers of ageing are predictive of mortality risk in a longitudinal clinical cohort of individuals diagnosed with oropharyngeal cancer

    Get PDF
    Background: Epigenetic clocks are biomarkers of ageing derived from DNA methylation levels at a subset of CpG sites. The difference between age predicted by these clocks and chronological age, termed “epigenetic age acceleration”, has been shown to predict age-related disease and mortality. We aimed to assess the prognostic value of epigenetic age acceleration and a DNA methylation-based mortality risk score with all-cause mortality in a prospective clinical cohort of individuals with head and neck cancer: Head and Neck 5000. We investigated two markers of intrinsic epigenetic age acceleration (IEAAHorvath and IEAAHannum), one marker of extrinsic epigenetic age acceleration (EEAA), one optimised to predict physiological dysregulation (AgeAccelPheno), one optimised to predict lifespan (AgeAccelGrim) and a DNA methylation-based predictor of mortality (ZhangScore). Cox regression models were first used to estimate adjusted hazard ratios (HR) and 95% confidence intervals (CI) for associations of epigenetic age acceleration with all-cause mortality in people with oropharyngeal cancer (n = 408; 105 deaths). The added prognostic value of epigenetic markers compared to a clinical model including age, sex, TNM stage and HPV status was then evaluated. Results: IEAAHannum and AgeAccelGrim were associated with mortality risk after adjustment for clinical and lifestyle factors (HRs per standard deviation [SD] increase in age acceleration = 1.30 [95% CI 1.07, 1.57; p = 0.007] and 1.40 [95% CI 1.06, 1.83; p = 0.016], respectively). There was weak evidence that the addition of AgeAccelGrim to the clinical model improved 3-year mortality prediction (area under the receiver operating characteristic curve: 0.80 vs. 0.77; p value for difference = 0.069). Conclusion: In the setting of a large, clinical cohort of individuals with head and neck cancer, our study demonstrates the potential of epigenetic markers of ageing to enhance survival prediction in people with oropharyngeal cancer, beyond established prognostic factors. Our findings have potential uses in both clinical and non-clinical contexts: to aid treatment planning and improve patient stratification

    Piloting the objective measurement of eating weight and speed at a population scale: a nested study within the Avon Longitudinal Study of Parents and Children [version 3; peer review: 2 approved]

    Get PDF
    Background: Effective measurement and adaption of eating behaviours (e.g., eating speed) may improve weight loss and weight over time. We assessed whether the Mandometer, a portable weighing scale connected to a computer that generates a graph of food removal rate from the plate to which it is connected, together with photo-imaging of food, might prove a less intensive and more economical approach to measuring eating behaviours at large scale. Methods: We deployed the Mandometer in the home environment to measure main meals over three days of 95 21-year-old participants of the Avon Longitudinal Study of Parents and Children. We used multi-level models to describe food weight and eating speed and, as exemplar analyses, examined the relationship of eating behaviours with body mass index (BMI), dietary composition (fat content) and genotypic variation (the FTO rs9939609 variant). Using this pilot data, we calculated the sample size required to detect differences in food weight and eating speed between groups of an exposure variable. Results: All participants were able to use the Mandometer effectively after brief training. In exemplar analyses, evidence suggested that obese participants consumed more food than those of "normal" weight (i.e., BMI 19 to <25 kg/m 2) and that A/A FTO homozygotes (an indicator of higher weight) ate at a faster rate compared to T/T homozygotes. There was also some evidence that those with a high-fat diet consumed less food than those with a low-fat diet, but little evidence that individuals with medium- or high-fat diets ate faster. Conclusions: We demonstrated the potential for assessing eating weight and speed in a short-term home setting and combining this with information in a research setting. This study may offer the opportunity to design interventions tailored for at-risk eating behaviours, offering advantages over the “one size fits all” approach of current failing obesity interventions
    corecore