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Abstract 

Background: Epigenetic clocks are biomarkers of ageing derived from DNA methylation levels at a subset of CpG 
sites. The difference between age predicted by these clocks and chronological age, termed “epigenetic age accel-
eration”, has been shown to predict age-related disease and mortality. We aimed to assess the prognostic value of 
epigenetic age acceleration and a DNA methylation-based mortality risk score with all-cause mortality in a prospec-
tive clinical cohort of individuals with head and neck cancer: Head and Neck 5000. We investigated two markers of 
intrinsic epigenetic age acceleration (IEAAHorvath and IEAAHannum), one marker of extrinsic epigenetic age accelera-
tion (EEAA), one optimised to predict physiological dysregulation (AgeAccelPheno), one optimised to predict lifespan 
(AgeAccelGrim) and a DNA methylation-based predictor of mortality (ZhangScore). Cox regression models were first 
used to estimate adjusted hazard ratios (HR) and 95% confidence intervals (CI) for associations of epigenetic age 
acceleration with all-cause mortality in people with oropharyngeal cancer (n = 408; 105 deaths). The added prognos-
tic value of epigenetic markers compared to a clinical model including age, sex, TNM stage and HPV status was then 
evaluated.

Results: IEAAHannum and AgeAccelGrim were associated with mortality risk after adjustment for clinical and lifestyle 
factors (HRs per standard deviation [SD] increase in age acceleration = 1.30 [95% CI 1.07, 1.57; p = 0.007] and 1.40 [95% 
CI 1.06, 1.83; p = 0.016], respectively). There was weak evidence that the addition of AgeAccelGrim to the clinical model 
improved 3-year mortality prediction (area under the receiver operating characteristic curve: 0.80 vs. 0.77; p value for 
difference = 0.069).

Conclusion: In the setting of a large, clinical cohort of individuals with head and neck cancer, our study demon-
strates the potential of epigenetic markers of ageing to enhance survival prediction in people with oropharyngeal 
cancer, beyond established prognostic factors. Our findings have potential uses in both clinical and non-clinical 
contexts: to aid treatment planning and improve patient stratification.
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Background
Oropharyngeal cancer (OPC), which includes cancers 
of the soft palate, base of tongue, uvula, palatine tonsils 
and tonsillar pillars [1], is the second most commonly 
diagnosed head and neck cancer (HNC) in the UK, with 
an age-standardised incidence rate of 2.9 per 100,000 
persons [2]. Risk factors include smoking, alcohol con-
sumption and human papillomavirus (HPV) infection. 
Estimated 5-year survival rates for people with OPC vary 
from 35 to 83% [3, 4]. As such, the ability to estimate sur-
vival probabilities at the time of diagnosis is important 
for clinical decision making and enrolment of low-risk 
individuals into treatment de-escalation trials [5].

HPV positivity, primarily HPV16, is a major determi-
nant of OPC prognosis [6–8]. Compared to people with 
non-HPV-driven tumours, people with HPV-driven 
tumours have a 60% reduced risk of death 3-year post-
diagnosis [8]. Consequently, HPV status is now included 
in prognostic models alongside TNM stage and comor-
bidity [8–11]. One such model has yielded a Harrell’s 
concordance statistic (C-statistic) of 0.68 (95% confidence 
interval [CI] 0.65, 0.71) in external validation, indicating 
good (but not excellent) prediction [12]. The potential for 
model improvement is currently being explored and the 
prognostic value of lifestyle factors has been evaluated 
[13–19]. The prognostic role of epigenetic biomarkers is 
less well studied.

Epigenetic biomarkers of ageing (“epigenetic clocks”), 
which are multivariate predictors of biological age based 
on DNA methylation (DNAm) levels at a subset of CpGs 
across the genome, are demonstrating promise in pre-
dicting age-related disease and mortality [20–22]. Most 
studies evaluating the prognostic utility of these epige-
netic clocks have been conducted in general (healthy) 
populations, however [22–24]. There is a paucity of stud-
ies focusing on clinical populations. One study used a 
Cox model to estimate hazard ratios (HRs) for the asso-
ciation between epigenetic age acceleration (EAA), that 
is the difference between age predicted by the epigenetic 
clocks and chronological age, and risk of death following 
cancer diagnosis (n = 1726 deaths) [25]. After adjusting 
for socio-demographic and lifestyle variables, the authors 
found limited evidence (OR 1.04, 95% CI 1.00–1.09) of 
an association with EAA based on an epigenetic clock 
derived from methylation at 353 CpG sites (EEAHorvath) 
[26]. However, mortality risk was 28% higher (OR 1.28, 
95% CI 1.11–1.47) for the highest versus lowest quartile 
of age acceleration based on an epigenetic clock derived 
from methylation at 71 CpG sites (EEAHannum) [27].

In this study, we investigated six epigenetic biomark-
ers in relation to survival in a cohort of individuals with 
OPC (n = 408). We examined associations between both 
“first generation” epigenetic clocks derived from DNAm 

levels at CpG sites found to be strongly associated with 
chronological age, and two more recently derived clocks: 
one optimised to predict physiological dysregulation and 
one optimised to predict lifespan. We also examined the 
association of a DNAm-based mortality risk score with 
survival.

In stage one of our analyses, we examined the associa-
tions of the six epigenetic biomarkers with survival using 
cox regression models, with and without adjustment 
for factors known to influence epigenetic ageing. In the 
second stage, we implement flexible parametric survival 
models to investigate the added prognostic value of epi-
genetic markers compared to a standard clinical model 
that included age, sex, TNM stage and HPV status.

Methods
Study population
The study population included a subset of individu-
als with OPC enrolled in the Head and Neck 5000 
(H&N5000) study, a prospective, UK-based, clinical 
cohort study of people with HNC (n = 5518) [28, 29]. 
H&N5000 was approved by the National Research Ethics 
Committee (South West Frenchay Ethics Committee, 10/
H0107/57) on 5th November 2010 and approved by the 
Research and Development departments of participating 
NHS Trusts.

Individuals were selected based on pre-treatment clini-
cal coding of OPC and the availability of baseline ques-
tionnaire and clinical data-capture information. Where 
possible, pathology reports of individual cases were 
subsequently checked to verify tumour site and sub-
type. Overall, 5474/5518 (99%) data-capture forms were 
completed, and 3361/5385 (62%) individuals returned all 
three baseline questionnaires.

Baseline data collection
Consent was wide-ranging, including permission to: col-
lect, store and use biological samples; carry out genetic 
analyses; collect information from hospital records and 
through self-reported questionnaires; and obtain mortal-
ity data through electronic record linkage [28]. Baseline 
collection was completed pre-treatment, unless the indi-
vidual’s diagnosis and treatment were the same proce-
dure (e.g. tonsillectomy), in which case recruitment and 
baseline procedures were completed within a month of 
the diagnostic procedure. Blood samples (n = 4676, 85%) 
were sent to the study laboratory (https:// www. brist ol. ac. 
uk/ popul ation- health- scien ces/ resea rch/ groups/ bblabs/) 
at ambient temperature for processing. They were cen-
trifuged at 3500 rpm for 10 min and the buffy coat layer 
used for DNA extraction. Additional samples were frozen 
and stored at − 80 °C.

https://www.bristol.ac.uk/population-health-sciences/research/groups/bblabs/
https://www.bristol.ac.uk/population-health-sciences/research/groups/bblabs/
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Assessment of HPV status
HPV serologic testing for HPV16 (E6, E7, E1, E2, E4 
and L1) antibodies was conducted at the German Can-
cer Research Center (DKFZ) using glutathione S‐trans-
ferase multiplex assays. HPV16 E6 seropositivity (a 
marker of HPV‐transformed tumour cells [30]) was indi-
cated if HPV16 E6 median fluorescence intensity (MFI) 
was > 1000 units [31, 32].

DNA methylation profiling
DNA was bisulphite-converted using the Zymo EZ DNA 
Methylation™ kit (Zymo, Irvine, CA, USA) and genome-
wide methylation data were generated using the Infinium 
MethylationEPIC BeadChip (EPIC array; Illumina, USA). 
Raw data files were pre-processed using the R package 
meffil (https:// github. com/ peris hky/ meffil/) [33]. Overall, 
440/448 samples passed quality control and were nor-
malised (Fig. 1). Further details are provided in the Sup-
plementary Material (Additional file 3).

Estimation of epigenetic age
DNAm data for a subset of CpGs on the EPIC array 
(n = 27,523) and an annotation file containing data on 
chronological age, sex and tissue type were uploaded 
onto the DNAm Age Calculator https:// dnama ge. 
genet ics. ucla. edu/ (Additional file  3: Supplementary 

Methods). The following epigenetic ageing measures 
were obtained: intrinsic epigenetic age acceleration 
based on Horvath’s multi-tissue predictor (IEAA) [26]; 
intrinsic epigenetic age acceleration based on Han-
num’s predictor (IEAAHannum) [27]; extrinsic epige-
netic age acceleration (EEAA), an enhanced version 
based on Hannum’s method, which up-weights the 
contribution of blood cell composition [21]; PhenoAge 
(AgeAccelPheno) [34] and GrimAge (AgeAccelGrim) 
[35] An overview of the age predictors is provided in 
Table  1. In each case, age acceleration was defined as 
the residual obtained from regressing predicted age, as 
estimated by the epigenetic clock, on chronological age.

Generation of the DNAm‑based mortality predictor 
in H&N5000
The epigenetic predictor for mortality (ZhangScore) 
was generated using the equation in [36]. Two of the 
ten CpGs included in the DNAm score were not present 
in the H&N5000 epigenetic data because methylation 
was measured using the EPIC array rather than Illumi-
na450K array, on which the score was developed. The 
score was therefore generated using the remaining 8 
CpGs (See Additional file 3: Supplementary Methods).

Head and neck 5000
n=5,511

Have epigenetic data 
n=448 

Eligible for inclusion
n=408

Failed QC n=8 
(incorrect sex prediction, n=2; sex 
detection outliers, n=3,outlier in 
predicted median methylated vs. 

unmethylated signal, n=1; duplicate 
samples, n=2) 

Recoded as non-OPC n=32*

Analysis step 2: 
Added prognostic value of 

EpiAge measures
n=400

Analysis step 1: 
Association of EpiAge 

measures with survival 
n=408

Missing covariate data 
imputed**

Age, gender, TNM, HPV & 
comorbidity data available  

Fig. 1 Flow of participants included in the analysis. OPC, oropharyngeal cancer; QC, quality control

https://github.com/perishky/meffil/
https://dnamage.genetics.ucla.edu/
https://dnamage.genetics.ucla.edu/
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Study follow‑up and survival
Regular vital status updates were received from the 
NHS Central Register and NHS Digital, notifying on 
subsequent cancer registrations/deaths among cohort 
members. Recruitment finished December 2014 and fol-
low-up information on survival status was obtained on 1 
September 2018. The median duration of follow-up was 
4.3 years (inter-quartile range [IQR] 3.3–5.2).

Covariates
Information on age at diagnosis, sex, weight, height, mar-
ital status, highest educational attainment (school educa-
tion, college or degree-level), annual household income, 
smoking status (defined as “current”, “former” or “never” 
user of tobacco) and alcohol intake (units per week) were 
obtained from baseline questionnaires, which are avail-
able on the study website (http:// www. heada ndnec k5000. 
org. uk/). We were unable to include lifetime exposure to 
tobacco (i.e. pack-years) in the current analysis because 
information relating to time since starting and time since 
quitting smoking was insufficient, i.e. not enough peo-
ple completed these questions at baseline. Furthermore, 
the questionnaire did not capture information regarding 
periods of abstinence from tobacco use.

Clinically meaningful alcohol drinking categories (both 
sexes) were defined as “none”, “moderate” (≤ 14  units/
week) and “hazardous-to-harmful” (> 14  units/week), 
based on UK guidelines [37] (Additional file  3: Sup-
plementary Methods). We used categories of alcohol 

intake in our main analyses (rather than units consumed) 
because categories of drinking form the basis of clinical 
advice, i.e. they are more clinically relevant, and many 
governments and public health bodies have sought to 
promote public guidelines for “low risk” or “sensible” 
drinking based on cut-offs of intake. In addition, these 
alcohol exposure variables are consistent with previous 
publications [17, 38].

Body mass index (BMI) was calculated as: weight (kg)/
(height (m))2. Comorbidity was defined as “none”, “mild”, 
“moderate” or “severe” based on the extent of functional 
deterioration, as measured by the ACE-27. Ethnicity was 
not included because only two individuals reported being 
non-white.

Sex, diagnosis, stage and comorbidity were recorded 
on the data-capture form. Diagnosis was coding using 
the International Classification of Diseases (ICD) version 
10 [39]. Clinical staging of the tumour from T (charac-
teristics of the tumour site), N (degree of lymph node 
involvement) and M (the absence or presence of metasta-
ses) were based on the American Head and Neck Society 
TNM staging of head and neck cancer [40]. Comorbid-
ity was determined using the Adult Comorbidity Evalua-
tion-27 [ACE-27] [41].

Statistical analysis
Stata 15.0 (StataCorp. 2017) was used for all analyses. 
Firstly, we examined whether EAA measures were associ-
ated with survival, after controlling for established HNC 

Table 1 Overview of various measures of epigenetic age acceleration and mortality risk used in this analysis

*  Naive CD8 + T cells, exhausted CD8 + T cells, plasmablasts, CD4 + T cells, natural killer cells, monocytes and granulocytes. ** naïve (CD45RA + CCR7 +) cytotoxic T 
cells, exhausted (CD28-CD45RA-) cytotoxic T cells and plasmablasts

Epigenetic marker Abbreviation CpGs Description References

Intrinsic Epigenetic age acceleration based on Horvath IEAA 353 The residual resulting from regressing DNAm age 
on chronological age and estimates of major blood 
immune cell counts *

[26]

Intrinsic epigenetic age acceleration based on Hannum IEAAHannum 71 [27]

Extrinsic age acceleration based on Hannum EEAA 71 The residual resulting from a univariate model regress-
ing a weighted age estimate (which increases the 
contribution of 3 cell types known to change with age 
**) on chronological age

[21]

Age acceleration based on PhenoAge AgeAccelPheno 513 The residual resulting from a linear model when 
regressing PhenoAgeAccel on chronological age, where 
PhenoAge is an ageing measure based on a linear 
combination of chronological age and nine clinical 
biomarkers

[34]

Age acceleration based on GrimAge AgeAccelGrim 1030 The residual resulting from a linear model when 
regressing GrimAge on chronological age, where 
GrimAge is an ageing measure based on a linear com-
bination of chronological age, sex and DNAm-based 
surrogate biomarkers for smoking pack-years (DNAm-
packyears) and seven plasma protein levels

[35]

Mortality risk score based on Zhang ZhangScore 8 A linear combination of LASSO regression coefficient 
weighted methylation values of the ten CpGs

[36]

http://www.headandneck5000.org.uk/
http://www.headandneck5000.org.uk/
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prognostic factors; secondly, we investigated whether 
these measures provide any additional prognostic infor-
mation, over and above factors that are considered in 
routine clinical practice.

Step 1: examining associations of EAA measures with survival
Descriptive analyses were performed to explore the dis-
tribution of, and correlations between EAA measures. 
Baseline descriptive data were stratified by survival at 
3  years. The univariate association of covariates on all-
cause mortality risk was assessed using Kaplan–Meier 
curves and log-rank tests.

Multivariable Cox proportional hazards models were 
used to examine associations of EAA measures and the 
mortality predictor with overall survival, defined as the 
time in years from study enrolment to date of death from 
any cause or date of censorship (i.e. the last date of fol-
low-up). Measures were standardised using z-scores to 
allow comparison of effect estimates. Hazard ratios (HRs) 
and 95% CIs for all-cause mortality were calculated for 
each standard deviation (SD) increase in EAA.

For each epigenetic ageing marker, four separate Cox 
models were run: (1) a minimally adjusted model that 
controlled for sex; (2) a model that additionally controlled 
for clinical factors (TNM stage, HPV status, comorbid-
ity and BMI); (3) a model that additionally controlled for 
socio-demographic and economic factors (education, 
annual household income, marital status) and (4) a fully 
adjusted model that additionally controlled for lifestyle 
behaviours (self-reported smoking and alcohol consump-
tion). Models were selected a priori based on the exist-
ing literature linking these covariates with survival [15, 
42–46]. As a sensitivity analysis, we used the continuous 
measure of alcohol intake (units /week) rather than cat-
egories of intake in model 4.

For the DNAm-based mortality predictor (Zhang-
Score), the same models were run, with the exception that 
the minimally adjusted model also included age at time 
of diagnosis, since chronological age was not factored in 
when generating this score.

The proportional hazards assumption was checked 
using statistical tests and graphical diagnostics based on 
the Schoenfeld residuals. Missing covariate values were 
imputed using the ICE package for multiple chained 
equations in Stata [47] (Additional file 3: Supplementary 
Methods). As a further sensitivity analysis, we created a 
complete case dataset and analysed as above [48].

We chose not to include chronological age as a covari-
ate in the (EAA) primary survival models because, by 
definition, age acceleration residuals from a DNAm age 
predictor should be zero (i.e. not correlated with chron-
ological age). However, since chronological age is posi-
tively correlated with mortality, we re-ran the cox models 

adjusting for chronological age (imputed and complete 
case).

Step 2: assessing the prognostic value of EAA measures
Evidence of an association with survival is not enough 
to include novel biomarkers in prediction models; to aid 
clinicians they must provide added prognostic value to 
existing models [49]. We explored whether the addition 
of EAA measures to existing models based on established 
mortality risk factors (i.e. those currently considered in 
clinical decision making), improved model performance.

Flexible parametric survival models were fitted using 
the methods of Royston and Parmar [50, 51] (Additional 
file 3: Supplementary Methods). Models were fitted using 
maximum likelihood estimation via the “stpm2” com-
mand. Nonlinear relationships with continuous predic-
tors were considered using the multivariable fractional 
polynomial (MFP) algorithm [52] and implemented in 
Stata using the “mfp” command.

The following models were fit: (1) a “clinical model”, 
which comprised age, sex, TNM stage, HPV status and 
comorbidity; (2) clinical + IEAA; (3) clinical + EEAA; (4) 
clinical + IEAAHannum; (5) clinical + AgeAccelGrim; 
(6) clinical + AgeAccelPheno; (7) clinical + ZhangScore. 
Models were fit in a sub-sample of participants with data 
available for the clinical covariates included in the model 
(age, sex, tumour stage, comorbidity and HPV status).

The performance measures examined were the Akaike 
Information Criterion (AIC) and the C-statistic, an 
extension of the area under the receiver operating curve 
(AUC) to survival analysis [53, 54]. ROC curves and AUC 
functions were also calculated to characterise how well 
the models distinguished between people who were and 
were not alive at 3 years. Internal validation was per-
formed using 500 bootstrap samples to adjust perfor-
mance for optimism and calculate a shrinkage factor to 
be applied to model regression coefficients. Where there 
was evidence of model improvement with addition of the 
epigenetic markers, assessed based on the C-statistic, we 
also examined the complementary role of these markers 
in the prediction of mortality through inclusion in the 
same model.

Results
In total, 408 out of 1896 participants with patho-
logically confirmed OPC had epigenetic data avail-
able (Fig.  1). There were 105 deaths during follow-up 
(median = 5.3  years, IQR 4.9–6.0). The proportion of 
missing data is presented in Additional file 1: Table S1.

Baseline descriptives
Participants who were alive at 3 years had a mean age of 
57.4 years at diagnosis (SD = 8.9) compared to 62.9 years 
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(SD = 11.3) (Table 2). Overall, mean EAA measures were 
lower in people who were alive. The mortality risk score 
was also lower in those individuals who were alive at 3 
years. See Additional file  1: Table  S2 for complete case 
descriptives.

Pairwise correlations between epigenetic markers
The strongest correlation was between EEAA and IEAA-
Hannum (0.74) while the weakest was between IEAA and 
both AgeAccelGrim and ZhangScore (0.05) (Fig. 2).

Association of DNAm‑based biological age with survival
The results of the minimally adjusted and fully adjusted 
Cox regression analyses on imputed data (n = 408) are 
illustrated in Fig. 3. An overview of all the model outputs 
is provided in the Supplementary Material (Additional 
file 1: Table S3).

In the basic model, all the EAA measures except IEAA 
were associated with survival (Fig. 3). The reported asso-
ciations were in the expected directions, i.e. higher val-
ues of EAA were associated with higher mortality risk. 
HRs ranged from 1.22 (95% CI 1.00, 1.49; p = 0.048) for 
ZhangScore to 1.90 (95% CI 1.57, 2.29; p = 2.27 ×  10–11) 
for AgeAccelGrim, where HRs represent the difference 
in mortality risk per SD unit increase in the epigenetic 
marker. Associations of EEAA and ZhangScore with sur-
vival attenuated following adjustment for clinical and 
socioeconomic factors. In the fully adjusted model, which 
also adjusted for smoking and alcohol consumption, 
SD increases in IEAAHannum and AgeAccelGrim were 
associated with 30% and 40% increased mortality risks, 
respectively (HRs 1.30 [95% CI 1.07, 1.57; p = 0.007] and 
1.40 [95% CI 1.06, 1.83; p = 0.016]) (Fig. 3).

In the complete case analysis (n = 225; 49 deaths), the 
results of the minimally adjusted model were broadly 
comparable (Additional file  1: Table  S4) but IEAAHan-
num was not robust to adjustment for socioeconomic 
factors and the association of AgeAccelGrim with survival 
attenuated following adjustment for smoking and alcohol 
intake.

Using the continuous measure of alcohol intake (rather 
than categories) resulted in very similar effect estimates 
for IEAA, AgeAccelGrim, AgeAccelPheno and ZhangScore 
in the imputed analysis (Additional file 1: Table S5). The 
strength of the evidence linking IEAAHannum with mor-
tality risk was lower when alcohol units were used (HR 
1.22 [0.99, 1.50]; p = 0.066). There was some evidence 
that EEAA was associated with mortality risk (HR 1.34 
[1.10, 1.62]; p = 0.003). The results of the complete case 
analysis were comparable to those obtained when catego-
ries of alcohol exposure were used in model 4 (Additional 
file 1: Table S5).

The results of the sensitivity analysis, where we 
included chronological age as a covariate in the epi-
genetic age models, are presented in Additional file  1: 
Table  S3 (imputed) and Table  S4 (complete case). On 
adjusting for age, the associations of AgeAccelGrim and 
IEAAHannum with survival remained in the imputed 
analysis (fully adjusted HRs 1.50 [1.14, 1.97; p = 0.004] 
and 1.22 [1.00, 1.49; p = 0.052), respectively). The 
strength of the evidence associating these measures 
with survival was reduced in the complete case analysis, 
although effect estimates were similar (fully adjusted HRs 
1.42 [0.94, 2.14; p = 0.095] and 1.23 [0.88, 1.72; p = 0.234), 
respectively)”.

Examination of the predictive utility of epigenetic markers 
at 3 years
Table  3 shows the performance measures for the fitted 
models. The AIC values for the clinical + IEAA, clini-
cal + IEAAHannum and clinical + AgeAccelGrim models 
were lower than that of the standard clinical model. Two 
models are generally considered equivalent if the differ-
ence in AICs is less than two [55]. On this basis, all three 
of these models had a better overall fit compared to the 
standard clinical model. C-statistics ranged from 0.75 
(clinical model) to 0.78 (clinical + AgeAccelGrim model), 
but confidence intervals overlapped.

When we looked at the effect of adding two of the 
EAA measures to the clinical model (Additional file  1: 
Table  S6), the clinical + IEAAHannum + AgeAccelGrim 
had a lower AIC than the clinical + AgeAccelGrim model, 
indicating a better fit to the data, however the C-statistic 
was not improved compared to the simpler model, indi-
cating that the discriminative ability of the model was no 
better.

Given that the clinical + AgeAccelGrim model showed 
the strongest association in the Cox analysis and yielded 
the highest discrimination, we examined whether this 
model provided improved prediction at 3 years (n = 72 
deaths) compared to a standard clinical model includ-
ing age, sex, TNM stage, HPV and comorbidity, by com-
paring AUC values. There was weak evidence to suggest 
the clinical + AgeAccelGrim model had superior predic-
tive performance compared to the clinical model (clini-
cal AUC: 0.77, clinical + AgeAccelGrim AUC: 0.80; p 
value for difference = 0.069) (Fig. 4). The bootstrap opti-
mism corrected AUC values showed a small reduction 
in performance compared with the original model (opti-
mism-adjusted AUCs of 0.74 and 0.77 for clinical and 
clinical + AgeAccelGrim models, respectively).

The optimism-adjusted c-slope (uniform shrinkage 
factor) for the clinical + AgeAccelGrim model was 0.83, 
indicating some overfitting. The original predictor effects 
were adjusted by this value [56] (Table 4). In the adjusted 
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Table 2 Baseline characteristics of the study sample stratified by 3-year mortality status (n = 408)

EEAA, extrinsic epigenetic age acceleration; IEAA, intrinsic epigenetic age acceleration, TNM, Tumour, Node, Metastasis. P value for difference based on the chi-
squared test (categorical) and one-way ANOVA (continuous). * Based on the Adult Comorbidity Evaluation-27 (ACE-27). **For the epigenetic clock measures (IEAA, 
IEAAHannum, EEAA, AgeAccelPheno and AgeAccelGrim), mean values represent the difference in chronological age and age predicted by the clock, e.g. a mean 
value of 1.68 indicates that, on average, people who had died at 3 years were predicted to be 1.68 years older than their chronological age at baseline based on 

Characteristic Overall
(n = 408)

Dead at 3 years
(n = 77)

Alive at 3 years p value

(n = 331)

N % N % N %

Sex

Male 317 77.70 60 77.90 257 77.60

Female 91 22.30 17 22.10 74 22.40 0.958

TNM stage group

I 17 4.20 1 1.30 16 4.80

II 39 9.60 4 5.20 35 10.60

III 58 14.20 14 18.20 44 13.30

IV 294 72.10 58 75.30 236 71.30 0.175

HPV status

Negative 122 29.90 45 58.40 77 23.30

Positive 286 70.10 32 41.60 254 76.70  < 0.001

Comorbidity status*

None 211 52.10 26 34.20 185 56.20

Mild 119 29.40 27 35.50 92 28.00

Moderate/severe 75 18.50 23 30.30 52 15.80 0.001

Smoking

Never 110 28.10 8 11.00 102 32.00

Former 205 52.30 40 54.80 165 51.70

Current 77 19.60 25 34.20 52 16.30  < 0.001

Alcohol

Non-drinker 104 26.00 14 18.90 90 27.60

Moderate 90 22.50 11 14.90 79 24.20

Hazardous/harmful 206 51.50 49 66.20 157 48.20 0.019

Education

School education 170 43.70 37 50.00 133 42.20

College 158 40.60 28 37.80 130 41.30

Degree 61 15.70 9 12.20 52 16.50 0.422

Annual household income

 < £18,000 138 38.70 36 56.30 102 34.80

£18,000–£34,999 103 28.90 13 20.30 90 30.70

 > £35,000 116 32.50 15 23.40 101 34.50 0.006

Marital status

Single (never married) 47 11.70 11 14.70 36 11.00

Currently in relationship 280 69.70 38 50.70 242 74.00

No longer with spouse 75 18.70 26 34.00 49 15.00  < 0.001

N Mean (SD)** N Mean (SD)** N Mean (SD)** p value

Age at baseline 403 58.4 (9.6) 77 62.86 (11.25) 326 57.39 (8.91)  < 0.001

Body mass index 272 26.4 (4.9) 46 24.33 (4.76) 226 26.88 (4.87) 0.001

EEAA 408 − 0.03 (5.78) 77 1.68 (6.52) 331 − 0.42 (5.53) 0.004

IEAA 408 − 0.07 (4.37) 77 0.36 (4.34) 331 − 0.17 (4.38) 0.333

IEAAHannum 408 − 0.01 (3.94) 77 1.10 (4.52) 331 − 0.27 (3.76) 0.006

AgeAccelGrim 408 − 0.10 (5.61) 77 3.16 (5.37) 331 − 0.86 (5.40)  < 0.001

AgeAccelPheno 408 − 0.12 (6.57) 77 2.00 (7.04) 331 − 0.62 (6.36) 0.002

ZhangScore 408 − 2.20 (0.28) 77 − 2.15 (0.29) 331 − 2.21 (0.27) 0.096
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model, each SD unit increase in AgeAccelGrim was asso-
ciated with a 1.5-fold increased risk of death at 3  years 
(optimism-adjusted HR: 1.54, 95% CI 1.2, 1.92; p ≤ 0.001).

Smoking has been shown to be independently predic-
tive of mortality in H&N5000 [17]. The reduced effect 
estimate observed between AgeAccelGrim and mortal-
ity with adjustment for smoking status suggests that the 
enhanced prognostic ability gained from adding AgeAc-
celGrim to the clinical model could be due to the inclusion 
of a smoking predictor [35]. We conducted an additional 
sensitivity analysis (Additional file 2: Fig. S1) whereby we 
compared the prognostic ability of the following models: 
(1) clinical + AgeAccelGrim; (2) clinical + self-reported 
smoking; and (3) clinical + DNAmpackyears, the DNAm-
based surrogate biomarker for pack-years of smoking 
used to derive GrimAge (n = 384 participants with smok-
ing data available; no. deaths = 72). At 3 years, there was 
a suggestion that the clinical + AgeAccelGrim model 
had better discrimination (AUC value of 0.80 [95% 95% 
CI 0.74, 0.85]) than the clinical models including both 

their epigenome. A mean age value of − 0.42 indicates that people who were still alive at 3 years were predicted to be, on average, 0.42 years younger than their 
chronological age. The mortality risk score (ZhangScore), values represent methylation values (rather than years)

Table 2 (continued)

Fig. 2 Pairwise correlations between measures of epigenetic age 
acceleration and the mortality risk score. EEAA, extrinsic epigenetic 
age acceleration; IEAA, intrinsic epigenetic age

Fig. 3 Association of epigenetic age acceleration measures with mortality risk (n = 408). EEAA, extrinsic epigenetic age acceleration; IEAA, intrinsic 
epigenetic age acceleration. Minimally adjusted model included sex (and age for ZhangScores); fully adjusted model included tumour stage, HPV 
status, comorbidity, BMI, education, income, marital status, smoking status and alcohol consumption
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self-reported smoking (AUC = 0.77 [95% CI 0.71, 0.83]) 
and a DNAm surrogate for pack-years (AUC = 0.78 [0.72, 
0.83]), although there was limited evidence of a differ-
ence in AUCs based on chi-squared tests (p = 0.148).

Discussion
In this study of 408 OPC cases with a median of 5 years 
of follow-up, we demonstrate that epigenetic markers 
derived from blood are associated with increased risk of 
all-cause mortality and these associations are independ-
ent of established mortality risk factors. In particular, 
AgeAccelGrim, an “extrinsic” age acceleration measure 
which captures exogenous lifestyle factors and extracel-
lular changes related to ageing, had the strongest effect 
estimate, with each SD increase in EAA resulting in a 
40% increase in risk of death in the fully adjusted model 
(HR 1.40; 95% CI 1.06, 1.83; p = 0.016). IEEAHannum, 
an “intrinsic” measure of EAA, was also associated 

with mortality risk, but to a lesser extent. The addition 
of AgeAccelGrim to the clinical model showed marginal 
improvement in mortality risk prediction at 3  years 
(Clinical AUC: 0.77, Clinical + AgeAccelGrim AUC: 0.80; 
p = 0.069). Our findings support the literature which sug-
gests that age acceleration as measured by GrimAge is a 
better predictor of mortality risk in healthy populations 
compared to first-generation DNAm-based predictors 
(i.e. Horvath and Hannum’s clocks) [35].

It is unclear why some epigenetic ageing measures can 
predict mortality risk better than others in this popu-
lation. The DNAm clocks used to derive these meas-
ures reflect different aspects of cellular processes and 
exogenous factors (i.e. lifestyle factors). Smoking has 
been shown to be independently predictive of mortality 
among HNC cases [17], therefore it is possible that the 
relatively strong association of AgeAccelGrim with mor-
tality risk may be explained by the inclusion of the sur-
rogate measure for smoking in the GrimAge biomarker. 
When we compared the prognostic performance of the 
clinical + AgeAccelGrim model with clinical models 
including both self-reported smoking and the DNAm 
surrogate biomarker for pack-years of smoking, clini-
cal + AgeAccelGrim had better discrimination. While the 
difference in model performance was modest, it none-
theless suggests that the methylation-based measure of 
smoking provides a better indicator with less misclassi-
fication than self-report. Moreover, the prognostic utility 
of AgeAccelGrim does not appear to be solely driven by 
the inclusion of the DNAm-based biomarker for smok-
ing. GrimAge is also trained on a set of proteins known 
to be associated with mortality [35]. One of these, Plas-
minogen activator inhibitor 1 (PAI-1), is overexpressed 
in a variety of tumours and is a strong predictor of poor 
clinical outcomes [57–59]. Another, growth differentia-
tion factor 15 (GDF15) is involved in the pathogenesis of 
oral squamous cell carcinoma (OSCC) [60–62]. Further 
studies are needed to examine whether these factors may 
be contributing to the prognostic utility of GrimAge.

Hannum and Horvath’s clocks were built using similar 
regression techniques and show moderate correlation, 
yet, in our analysis, only IEAAHannum was associated 
with survival. This finding is consistent with previous 
work [25]. It is possible that, because the Hannum pre-
dictor was developed and validated in blood samples—
the tissue type used in our analysis—it may be better able 
to capture cell-intrinsic processes in blood compared 
with a predictor that was developed across multiple tis-
sue, i.e. Horvath’s predictor.

Our investigation has several strengths including the 
relatively long follow-up period, the fact that individuals 
were sampled at the time of diagnosis and that DNAm 
was assayed in the same laboratory. We were also able to 

Table 3 Measures of model performance for survival prediction

AgeAccelGrim, age acceleration based on DNAmGrimAge; AgeAccelPheno; age 
acceleration based on PhenoAge; AIC, Akaike information criterion; C-statistic, 
Harrell’s concordance statistic; EEAA, extrinsic epigenetic age acceleration; IEAA, 
intrinsic epigenetic age acceleration; ZhangScore, DNA methylation score based 
on CpG sites found to be associated with mortality risk; 95% CI, 95% confidence 
interval

Model AIC C-statistic (95% CI)

Clinical 486.93 0.75 (0.70, 0.80)

Clinical + EEAA 483.36 0.76 (0.71, 0.81)

Clinical + IEAA 488.14 0.76 (0.71, 0.81)

Clinical + IEAAHannum 480.10 0.77 (0.72, 0.82)

Clinical + AgeAccelGrim 473.14 0.78 (0.73, 0.83)

Clinical + AgeAccelPheno 485.52 0.76 (0.71, 0.81)

Clinical + ZhangScore 488.72 0.75 (0.70, 0.80)

Fig. 4 Independent contribution of AgeAccelGrim to prognosis 
beyond clinical factors. AUC, area under the Roc curve
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account for a range of factors which are known to influ-
ence both DNAm and HNC risk [63, 64] and missing 
covariate data were imputed to minimise possible biases 
[65, 66].

Our study has several limitations. First, the sample 
size for our analysis was relatively small and we were 
unable to identify independent prospective datasets to 
validate our findings. This limits the translation impact 
of our work. To mitigate this, we obtained estimates of 
a uniform shrinkage factor and multiplied this by the 
original β-coefficients from the fitted model to obtain 
optimism-adjusted coefficients. Second, various unmeas-
ured confounders may influence the outcome of these 
age predictors, including genetic and environmental fac-
tors. While we found that the associations of GrimAge 
and IEAAHannum persisted after controlling for smok-
ing and alcohol intake in our primary analyses, residual 
confounding is likely to be present. This is especially 
likely since we used categories of exposure which were 
derived via participants’ self-report, which is prone to 
recall bias and/or misreporting. We conducted sensitiv-
ity analyses to evaluate residual confounding by alcohol 
based on a continuous variable of units/week and found 
that the effect estimates for AgeAccelGrim were com-
parable to those of our primary analysis (HR 1.40 [1.05, 
1.85]; p = 0.020 in the model that included units of alco-
hol consumed vs 1.40 [1.06, 1.83]; p = 0.016 in the model 
that included categories of alcohol consumption). The 
association of IEAAHannum with mortality remained 
when alcohol units were used but the HR was lower (HR 

1.22 [0.99, 1.50]; p = 0.066 vs 1.30 [1.07, 1.57]; p = 0.007 
for the model that included alcohol categories). While we 
were unable to derive a continuous measure for lifetime 
smoking, we utilised a DNAm-derived measure of pack-
years of smoking in our sensitivity analysis for Grim-
Age. We found that the addition of AgeAccelGrim to a 
clinical model that included age, tumour stage and HPV 
status had slightly better discrimination (AUC = 0.80) 
compared to a clinical model that additionally included 
the DNAm surrogate marker for smoking (AUC = 0.78). 
Genome-wide DNA methylation (DNAm) profiling has 
allowed for the development of molecular predictors for 
a multitude of traits and diseases, including smoking and 
alcohol intake [60]. Future studies could implement the 
use of other methylation scores to index these variables 
[63, 64]. Third, there is a disparity in coverage between 
Illumina 450  K and EPIC platforms meaning that 17 of 
the 353 CpGs (4.8%), and 6 of the 71 CpGs (8.5%) neces-
sary to calculate epigenetic age via the Horvath and Han-
num methods, respectively, were missing [67]. Similarly, 
two of the CpGs included in the DNAm risk score for 
mortality were missing from the DNA methylation data-
set for the same reason. Previous work suggests that the 
lack of the clock-CpGs on the EPIC array does not under-
mine the utility of the epigenetic age predictors [68]. 
Fourth, we did not account for multiple testing, although 
evidence of correlation between some of the epigenetic 
measures suggests that correction may not have been 
appropriate. Finally, it was not possible to examine can-
cer-specific mortality.

Table 4 Estimated coefficients (uncorrected and corrected) for the clinical + AgeAccelGrim model

Regression coefficients (ß) and 95% confidence intervals (CI) for 3-year overall survival

Hazard ratios can be obtained by exponentiating model estimates

Original model Final model after adjustment for overfitting

95% CI 95% CI

Variable β ll ul β ll ul

Age 0.05 0.02 0.07 0.04 0.02 0.06

Sex

Female 0.42 − 0.14 0.99 0.35 − 0.12 0.82

Tumour stage

II 0.64 − 1.56 2.85 0.53 − 1.29 2.36

III 1.65 − 0.38 3.69 1.37 − 0.32 3.06

IV 1.85 − 0.14 3.84 1.54 − 0.12 3.19

HPV status

Positive − 0.95 − 1.47 − 0.44 − 0.79 − 1.22 − 0.36

Comorbidity*

Mild 0.33 − 0.23 0.90 0.28 − 0.19 0.75

Moderate/severe 0.24 − 0.38 0.85 0.20 − 0.31 0.70

AgeAccelGrim 0.52 0.26 0.78 0.43 0.22 0.65
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Conclusion
DNAm-based estimators of ageing could provide prog-
nostic utility in people with OPC, above established 
prognostic factors, though the mechanisms of association 
are currently unclear. That an accurate, easy-to-measure 
biomarker could serve as a better predictor of mortal-
ity risk is important as it could aid treatment planning 
and improve patient stratification in study design. These 
findings should be investigated in further, independent 
samples.
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