109 research outputs found

    MEME-LaB : motif analysis in clusters

    Get PDF
    Genome-wide expression analysis can result in large numbers of clusters of co-expressed genes. While there are tools for ab initio discovery of transcription factor binding sites, most do not provide a quick and easy way to study large numbers of clusters. To address this, we introduce a web-tool called MEME-LaB. The tool wraps MEME (an ab initio motif finder), providing an interface for users to input multiple gene clusters, retrieve promoter sequences, run motif finding, and then easily browse and condense the results, facilitating better interpretation of the results from large-scale datasets

    Session Five: Expert Panel Discussion on Fighting Impunity

    Get PDF
    Kata kunci: Metode Sugestopedia, Kepercayaan Diri Permasalahan pokok dalam penelitian ini adalah bagaimana implementasi metode sugestopedia dalam membangun self-confidence (kepercayaan diri) pada pembelajaran matematika siswa kelas VIII MTs. SA Sampano

    Conserved noncoding sequences highlight shared components of regulatory networks in dicotyledonous plants

    Get PDF
    Conserved noncoding sequences (CNSs) in DNA are reliable pointers to regulatory elements controlling gene expression. Using a comparative genomics approach with four dicotyledonous plant species (Arabidopsis thaliana, papaya [Carica papaya], poplar [Populus trichocarpa], and grape [Vitis vinifera]), we detected hundreds of CNSs upstream of Arabidopsis genes. Distinct positioning, length, and enrichment for transcription factor binding sites suggest these CNSs play a functional role in transcriptional regulation. The enrichment of transcription factors within the set of genes associated with CNS is consistent with the hypothesis that together they form part of a conserved transcriptional network whose function is to regulate other transcription factors and control development. We identified a set of promoters where regulatory mechanisms are likely to be shared between the model organism Arabidopsis and other dicots, providing areas of focus for further research

    Association Between Risk-of-Bias Assessments and Results of Randomized Trials in Cochrane Reviews: The ROBES Meta-Epidemiologic Study.

    Get PDF
    Flaws in the design of randomized trials may bias intervention effect estimates and increase between-trial heterogeneity. Empirical evidence suggests that these problems are greatest for subjectively assessed outcomes. For the Risk of Bias in Evidence Synthesis (ROBES) Study, we extracted risk-of-bias judgements (for sequence generation, allocation concealment, blinding, and incomplete data) from a large collection of meta-analyses published in the Cochrane Library (issue 4; April 2011). We categorized outcome measures as mortality, other objective outcome, or subjective outcome, and we estimated associations of bias judgements with intervention effect estimates using Bayesian hierarchical models. Among 2,443 randomized trials in 228 meta-analyses, intervention effect estimates were, on average, exaggerated in trials with high or unclear (versus low) risk-of-bias judgements for sequence generation (ratio of odds ratios (ROR) = 0.91, 95% credible interval (CrI): 0.86, 0.98), allocation concealment (ROR = 0.92, 95% CrI: 0.86, 0.98), and blinding (ROR = 0.87, 95% CrI: 0.80, 0.93). In contrast to previous work, we did not observe consistently different bias for subjective outcomes compared with mortality. However, we found an increase in between-trial heterogeneity associated with lack of blinding in meta-analyses with subjective outcomes. Inconsistency in criteria for risk-of-bias judgements applied by individual reviewers is a likely limitation of routinely collected bias assessments. Inadequate randomization and lack of blinding may lead to exaggeration of intervention effect estimates in randomized trials

    Dynamic instability of the major urinary protein gene family revealed by genomic and phenotypic comparisons between C57 and 129 strain mice

    Get PDF
    Targeted sequencing, manual genome annotation, phylogenetic analysis and mass spectrometry were used to characterise major urinary proteins (MUPs) and the Mup clusters of two strains of inbred mice

    High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation

    Get PDF
    Leaf senescence is an essential developmental process that impacts dramatically on crop yields and involves altered regulation of thousands of genes and many metabolic and signaling pathways, resulting in major changes in the leaf. The regulation of senescence is complex, and although senescence regulatory genes have been characterized, there is little information on how these function in the global control of the process. We used microarray analysis to obtain a highresolution time-course profile of gene expression during development of a single leaf over a 3-week period to senescence. A complex experimental design approach and a combination of methods were used to extract high-quality replicated data and to identify differentially expressed genes. The multiple time points enable the use of highly informative clustering to reveal distinct time points at which signaling and metabolic pathways change. Analysis of motif enrichment, as well as comparison of transcription factor (TF) families showing altered expression over the time course, identify clear groups of TFs active at different stages of leaf development and senescence. These data enable connection of metabolic processes, signaling pathways, and specific TF activity, which will underpin the development of network models to elucidate the process of senescence

    Molecular complexity of the major urinary protein system of the Norway rat, Rattus norvegicus

    Get PDF
    ABSTRACT Major urinary proteins (MUP) are the major component of the urinary protein fraction in house mice ( Mus spp.) and rats ( Rattus spp.). The structure, polymorphism and functions of these lipocalins have been well described in the western European house mouse ( Mus musculus domesticus ), clarifying their role in semiochemical communication. The complexity of these roles in the mouse raises the question of similar functions in other rodents, including the Norway rat, Rattus norvegicu s. Norway rats express MUPs in urine but information about specific MUP isoform sequences and functions is limited. In this study, we present a detailed molecular characterization of the MUP proteoforms expressed in the urine of two laboratory strains, Wistar Han and Brown Norway, and wild caught animals, using a combination of manual gene annotation, intact protein mass spectrometry and bottom-up mass spectrometry-based proteomic approaches. Detailed sequencing of the proteins reveals a less complex pattern of primary sequence polymorphism than the mouse. However, unlike the mouse, rat MUPs exhibit added complexity in the form of post-translational modifications including phosphorylation and exoproteolytic trimming of specific isoforms. The possibility that urinary MUPs may have different roles in rat chemical communication than those they play in the house mouse is also discussed

    Molecular complexity of the major urinary protein system of the Norway rat, <i>Rattus norvegicus</i>

    Get PDF
    ABSTRACTMajor urinary proteins (MUP) are the major component of the urinary protein fraction in house mice (Mus spp.) and rats (Rattus spp.). The structure, polymorphism and functions of these lipocalins have been well described in the western European house mouse (Mus musculus domesticus), clarifying their role in semiochemical communication. The complexity of these roles in the mouse raises the question of similar functions in other rodents, including the Norway rat, Rattus norvegicus. Norway rats express MUPs in urine but information about specific MUP isoform sequences and functions is limited. In this study, we present a detailed molecular characterization of the MUP proteoforms expressed in the urine of two laboratory strains, Wistar Han and Brown Norway, and wild caught animals, using a combination of manual gene annotation, intact protein mass spectrometry and bottom-up mass spectrometry-based proteomic approaches. Detailed sequencing of the proteins reveals a less complex pattern of primary sequence polymorphism than the mouse. However, unlike the mouse, rat MUPs exhibit added complexity in the form of post-translational modifications including phosphorylation and exoproteolytic trimming of specific isoforms. The possibility that urinary MUPs may have different roles in rat chemical communication than those they play in the house mouse is also discussed.</jats:p
    • …
    corecore