210 research outputs found
Evaluation of EC Comparison on the Determination of 226Ra, 228Ra, 234U and 238U in Mineral Waters
This report describes all details of the comparison for the determination of 226Ra, 228Ra, 234U and 238U in mineral waters among 45 European laboratories monitoring radioactivity in food and the environment. Three commercially available mineral waters were provided as comparison samples. Reference values of the four radionuclides under study in this comparison were determined in collaborative work of IRMM and the Bundesamt für Strahlenschutz (BfS), using tracer techniques and standardised radionuclide solutions. The reference values are thus traceable to the SI units. The sample preparation and measurement processes applied in the participating laboratories are described and the results of the comparison are presented and discussed in detail. Whereas, in general, the measurement results for the uranium isotopes show a relatively favourable agreement with the reference value, the results of this comparison point at severe problems of 226Ra and 228Ra determination in about one fourth and more than one third of the laboratories, respectively. For radium, 19 results corresponding to 14 % of all are even off by a factor of two or more. By comparison, for uranium, this number amounts to 6 % (9 results out of 150). Nevertheless, also for the determination of uranium, 14 % to 23 % of the laboratories report results not compliant with the En evaluation criterion. The corresponding participants are urgently requested to investigate and revise their analytical methods.JRC.D.4-Nuclear physic
Mechanism of peptide-induced mast cell degranulation: translocation and patch clamp studies.
Substance P and other polycationic peptides are thought to stimulate mast cell degranulation via direct activation of G proteins. We investigated the ability of extracellularly applied substance P to translocate into mast cells and the ability of intracellularly applied substance P to stimulate degranulation. In addition, we studied by reverse transcription--PCR whether substance P-specific receptors are present in the mast cell membrane. To study translocation, a biologically active and enzymatically stable fluorescent analogue of substance P was synthesized. A rapid, substance P receptor- and energy-independent uptake of this peptide into pertussis toxin-treated and -untreated mast cells was demonstrated using confocal laser scanning microscopy. The peptide was shown to localize preferentially on or inside the mast cell granules using electron microscopic autoradiography with 125I-labeled all-D substance P and 3H-labeled substance P. Cell membrane capacitance measurements using the patch-clamp technique demonstrated that intracellularly applied substance P induced calcium transients and activated mast cell exocytosis with a time delay that depended on peptide concentration (delay of 100-500 s at concentrations of substance P from 50 to 5 microM). Degranulation in response to intracellularly applied substance P was inhibited by GDPbetaS and pertussis toxin, suggesting that substance P acts via G protein activation. These results support the recently proposed model of a receptor-independent mechanism of peptide-induced mast cell degranulation, which assumes a direct interaction of peptides with G protein alpha subunits subsequent to their translocation across the plasma membrane
Penetration depth, multiband superconductivity, and absence of muon-induced perturbation in superconducting PrOsSb
Transverse-field muon spin rotation (SR) experiments in the
heavy-fermion superconductor PrOsSb ( K) suggest that
the superconducting penetration depth is temperature-independent
at low temperatures, consistent with a gapped quasiparticle excitation
spectrum. In contrast, radiofrequency (rf) inductive measurements yield a
stronger temperature dependence of , indicative of point nodes in
the gap. This discrepancy appears to be related to the multiband structure of
PrOsSb. Muon Knight shift measurements in PrOsSb
suggest that the perturbing effect of the muon charge on the neighboring
Pr crystalline electric field is negligibly small, and therefore is
unlikely to cause the difference between the SR and rf results.Comment: 10 pages, 7 figure
Role of amyloid-β glycine 33 in oligomerization, toxicity, and neuronal plasticity
The aggregation of the amyloid-{beta} (Abeta) peptide plays a pivotal role in the pathogenesis of Alzheimer's disease, as soluble oligomers are intimately linked to neuronal toxicity and inhibition of hippocampal long-term potentiation (LTP). In the C-terminal region of Abeta there are three consecutive GxxxG dimerization motifs, which we could previously demonstrate to play a critical role in the generation of Abeta. Here, we show that glycine 33 (G33) of the central GxxxG interaction motif within the hydrophobic Abeta sequence is important for the aggregation dynamics of the peptide. Abeta peptides with alanine or isoleucine substitutions of G33 displayed an increased propensity to form higher oligomers, which we could attribute to conformational changes. Importantly, the oligomers of G33 variants were much less toxic than Abeta(42) wild type (WT), in vitro and in vivo. Also, whereas Abeta(42) WT is known to inhibit LTP, Abeta(42) G33 variants had lost the potential to inhibit LTP. Our findings reveal that conformational changes induced by G33 substitutions unlink toxicity and oligomerization of Abeta on the molecular level and suggest that G33 is the key amino acid in the toxic activity of Abeta. Thus, a specific toxic conformation of Abeta exists, which represents a promising target for therapeutic interventions
Pressure and linear heat capacity in the superconducting state of thoriated UBe13
Even well below Tc, the heavy-fermion superconductor (U,Th)Be13 has a large
linear term in its specific heat. We show that under uniaxial pressure, the
linear heat capacity increases in magnitude by more than a factor of two. The
change is reversible and suggests that the linear term is an intrinsic property
of the material. In addition, we find no evidence of hysteresis or of latent
heat in the low-temperature and low-pressure portion of the phase diagram,
showing that all transitions in this region are second order.Comment: 5 pages, 4 figure
The composite picture of the charge carriers in La2-xSrxCuO4 (0.063 < x < 0.11) superconductors
Through far-infrared studies of La2-xSrxCuO4 single crystals for x = 0.063,
0.07, 0.09, and 0.11, we found that only ~ 0.2 % of the total holes
participated in the nearly dissipationless normal state charge transport and
superconductivity. We have also observed characteristic collective modes at w ~
18 cm-1 and 22 cm-1 due to the bound carriers in an electronic lattice (EL)
state and the free carriers are massively screened by the EL. Our findings lead
us to propose a composite picture of the charge system where the free carriers
are coupled to and riding on the EL. This unique composite system of charge
carriers may provide further insights into the understanding of the cuprate
physics.Comment: 10 pages, 4 figure
Slow crossover in YbXCu4 intermediate valence compounds
We compare the results of measurements of the magnetic susceptibility Chi(T),
the linear coefficient of specific heat Gamma(T)=C(T)/T and 4f occupation
number nf(T) for the intermediate valence compounds YbXCu4 (X = Ag, Cd, In, Mg,
Tl, Zn) to the predictions of the Anderson impurity model, calculated in the
non-crossing approximation (NCA). The crossover from the low temperature Fermi
liquid state to the high temperature local moment state is substantially slower
in the compounds than predicted by the NCA; this corresponds to the
''protracted screening'' recently predicted for the Anderson Lattice. We
present results for the dynamic susceptibility, measured through neutron
scattering experiments, to show that the deviations between theory and
experiment are not due to crystal field effects, and we present
x-ray-absorption fine-structure (XAFS) results that show the local crystal
structure around the X atoms is well ordered, so that the deviations probably
do not arise from Kondo Disorder. The deviations may correlate with the
background conduction electron density, as predicted for protracted screening.Comment: Submitted to Physical Review B on June 7, 2000, accepted for
publication November 2, 2000. Changes to the original manuscript include: 1)
a discussion of the relation of the slow crossover to the conduction electron
density; 2) a discussion of the relation of the reported results to earlier
photoemission results; and, 3) minor editorial change
Unusual kondo behavior in the indium-rich heavy fermion antiferromagnet Ce3Pt4In13
We report the thermodynamic, magnetic, and electronic transport properties of
the new ternary intermetallic system (Ce,La)3Pt4In13. Ce3Pt4In13 orders
antiferromagnetically at 0.95 K while the non-magnetic compound La3Pt4In13 is a
conventional 3.3 K superconductor. Kondo lattice effects appear to limit the
entropy associated with the Neel transition to (1/4)Rln2 as an electronic
contribution to the specific heat of gamma = 1 J/mole-Ce K2 is observed at TN;
roughly 35% of this gamma survives the ordering transition. Hall effect,
thermoelectric power, and ambient-pressure resistivity measurements confirm
this interpretation. These results suggest that RKKY and Kondo interactions are
closely balanced in this compound (TN = TK). Contrary to expectations based on
the Doniach Kondo necklace model, applied hydrostatic pressure modestly
enhances the magnetic ordering temperature with dTN/dP = +23 mK/kbar. As such
Ce3Pt4In13 provides a counterexample to Kondo systems with similar Kondo and
RKKY energy scales wherein applied pressure enhances TK at the expense of the
ordered magnetic state.Comment: submitted to Physical Review
- …