67 research outputs found

    Shape from specular reflections and optical flow

    Get PDF

    ReS²tAC—UAV-borne real-time SGM stereo optimized for embedded ARM and CUDA devices

    Get PDF
    With the emergence of low-cost robotic systems, such as unmanned aerial vehicle, the importance of embedded high-performance image processing has increased. For a long time, FPGAs were the only processing hardware that were capable of high-performance computing, while at the same time preserving a low power consumption, essential for embedded systems. However, the recently increasing availability of embedded GPU-based systems, such as the NVIDIA Jetson series, comprised of an ARM CPU and a NVIDIA Tegra GPU, allows for massively parallel embedded computing on graphics hardware. With this in mind, we propose an approach for real-time embedded stereo processing on ARM and CUDA-enabled devices, which is based on the popular and widely used Semi-Global Matching algorithm. In this, we propose an optimization of the algorithm for embedded CUDA GPUs, by using massively parallel computing, as well as using the NEON intrinsics to optimize the algorithm for vectorized SIMD processing on embedded ARM CPUs. We have evaluated our approach with different configurations on two public stereo benchmark datasets to demonstrate that they can reach an error rate as low as 3.3%. Furthermore, our experiments show that the fastest configuration of our approach reaches up to 46 FPS on VGA image resolution. Finally, in a use-case specific qualitative evaluation, we have evaluated the power consumption of our approach and deployed it on the DJI Manifold 2-G attached to a DJI Matrix 210v2 RTK unmanned aerial vehicle (UAV), demonstrating its suitability for real-time stereo processing onboard a UAV

    Smartspectrometer—embedded optical spectroscopy for applications in agriculture and industry

    Get PDF
    The ongoing digitization of industry and agriculture can benefit significantly from optical spectroscopy. In many cases, optical spectroscopy enables the estimation of properties such as substance concentrations and compositions. Spectral data can be acquired and evaluated in real time, and the results can be integrated directly into process and automation units, saving resources and costs. Multivariate data analysis is needed to integrate optical spectrometers as sensors. Therefore, a spectrometer with integrated artificial intelligence (AI) called SmartSpectrometer and its interface is presented. The advantages of the SmartSpectrometer are exemplified by its integration into a harvesting vehicle, where quality is determined by predicting sugar and acid in grapes in the field

    Predictive tracking with improved motion models for optical belt sorting

    Get PDF
    Optical belt sorters are a versatile means to sort bulk materials. In previous work, we presented a novel design of an optical belt sorter, which includes an area scan camera instead of a line scan camera. Line scan cameras, which are well-established in optical belt sorting, only allow for a single observation of each particle. Using multitarget tracking, the data of the area scan camera can be used to derive a part of the trajectory of each particle. The knowledge of the trajectories can be used to generate accurate predictions as to when and where each particle passes the separation mechanism. Accurate predictions are key to achieve high quality sorting results. The accuracy of the trajectories and the predictions heavily depends on the motion model used. In an evaluation based on a simulation that provides us with ground truth trajectories, we previously identified a bias in the temporal component of the prediction. In this paper, we analyze the simulation-based ground truth data of the motion of different bulk materials and derive models specifically tailored to the generation of accurate predictions for particles traveling on a conveyor belt. The derived models are evaluated using simulation data involving three different bulk materials. The evaluation shows that the constant velocity model and constant acceleration model can be outperformed by utilizing the similarities in the motion behavior of particles of the same type

    Boppard: GlĂĽckwunsch zum FĂĽnfzigsten!

    No full text

    Symposium Tag der außeruniversitären Forschungseinrichtungen

    No full text
    21 avril 17921792/04/21 (N43)

    Informationsfusion in der Mess- und Sensortechnik

    No full text
    • …
    corecore