74 research outputs found

    Measuring PERMA+4: validation of the German version of the Positive Functioning at Work Scale

    Get PDF
    This study investigates the association between the PERMA+4 model and psychological safety, while also examining the validation of the Positive Functioning at Work (PFW) scale in a German-speaking population. The study discovered strong association between PERMA+4 and psychological safety, which raises important questions and potential concerns regarding the jangle fallacy. Similar to the PERMA model, PERMA+4 should be considered a framework for attaining psychological safety. The German version of the PFW scale demonstrated satisfactory fit with the model, indicating its factorial validity. To gain insights into promoting workplace wellbeing, it is recommended to conduct longitudinal studies to determine whether psychological safety is a cause or result of PERMA+4. This study enhances our understanding of workplace wellbeing and emphasizes the association between PERMA+4 and psychological safety

    Preoperative Imaging with [F-18]-Fluorocholine PET/CT in Primary Hyperparathyroidism

    Get PDF
    Primary hyperparathyroidism (pHPT) is a common endocrine disorder due to hyperfunctioning parathyroid glands. To date, the only curing therapy is surgical removal of the dysfunctional gland, making correct detection and localization crucial in order to perform a minimally invasive parathyroidectomy. F-18-Fluorocholine positron emission tomography/computed tomography (F-18-FCH PET/CT) has shown promising results for the detection of pHPT, suggesting superiority over conventional imaging with ultrasounds or scintigraphy. A total of 33 patients with pHPT who had negative or equivocal findings in conventional imaging received F-18-FCH PET/CT preoperatively and were retrospectively included. A pathological hyperfunctional parathyroid gland was diagnosed in 24 cases (positive PET, 72.7%), 4 cases showed equivocal choline uptake (equivocal PET, 12.1%), and in 5 cases, no enhanced choline uptake was evident (negative PET, 15.2%). Twelve of the twenty-four detected adenoma patients underwent surgery, and in all cases, a pathological parathyroid adenoma was resected at the site detected by PET/CT. Two of the six patients without pathological choline uptake who received a parathyroidectomy revealed no evidence of parathyroid adenoma tissue in the histopathological evaluation. This retrospective study analyzes F-18-FCH PET/CT in a challenging patient cohort with pHPT and negative or equivocal conventional imaging results and supports the use of F-18-FCH for the diagnosis of hyperfunctional parathyroid tissue, especially in this patient setting, with a 100% true positive and true negative detection rate. Our study further demonstrates the importance of F-18-FCH PET/CT for successful surgical guidance

    Outcome after PSMA-PET/CT-based salvage radiotherapy for nodal recurrence after radical prostatectomy

    Get PDF
    PURPOSE Nodal recurrent prostate cancer (PCa) represents a common state of disease, amenable to local therapy. PSMA-PET/CT detects PCa recurrence at low PSA levels. The aim of this study was to evaluate the outcome of PSMA-PET/CT-based salvage radiotherapy (sRT) for lymph node (LN) recurrence. METHODS A total of 100 consecutive patients treated with PSMA-PET/CT-based salvage elective nodal radiotherapy (sENRT) for LN recurrence were retrospectively examined. Patients underwent PSMA-PET/CT scan due to biochemical persistence (bcP, 76%) or biochemical recurrence (bcR, 24%) after radical prostatectomy (RP). Biochemical recurrence-free survival (BRFS) defined as PSA 1~ng/ml) with improved DMFS, respectively. No such association was seen for the number of affected lymph nodes. CONCLUSIONS Overall, the present analysis shows that the so far, unmatched sensitivity and specificity of PSMA-PET/CT translates in comparably high BRFS and DMFS after PSMA-PET/CT-based sENRT for patients with PCa LN recurrence. Concomitant ADT, duration of ADT, PSA value before sRT, and localization of LN metastases were significant factors for improved outcome

    68Ga-EMP-100 PET/CT-a novel ligand for visualizing c-MET expression in metastatic renal cell carcinoma-first in-human biodistribution and imaging results

    Get PDF
    BACKGROUND 68Ga-EMP-100 is a novel positron emission tomography (PET) ligand that directly targets tumoral c-MET expression. Upregulation of the receptor tyrosin kinase c-MET in renal cell carcinoma (RCC) is correlated with overall survival in metastatic disease (mRCC). Clinicopathological staging of c-MET expression could improve patient management prior to systemic therapy with for instance inhibitors targeting c-MET such as cabozantinib. We present the first in-human data of 68Ga-EMP-100 in mRCC patients evaluating uptake characteristics in metastases and primary RCC. METHODS Twelve patients with mRCC prior to anticipated cabozantinib therapy underwent 68Ga-EMP-100 PET/CT imaging. We compared the biodistribution in normal organs and tumor uptake of mRCC lesions by standard uptake value (SUVmean) and SUVmax measurements. Additionally, metastatic sites on PET were compared to contrast-enhanced computed tomography (CT) and the respective, quantitative PET parameters were assessed and then compared inter- and intra-individually. RESULTS Overall, 87 tumor lesions were analyzed. Of these, 68/87 (79.3%) were visually rated c-MET-positive comprising a median SUVmax of 4.35 and SUVmean of 2.52. Comparing different tumor sites, the highest uptake intensity was found in tumor burden at the primary site (SUVmax 9.05 (4.86-29.16)), followed by bone metastases (SUVmax 5.56 (0.97-15.85)), and lymph node metastases (SUVmax 3.90 (2.13-6.28)) and visceral metastases (SUVmax 3.82 (0.11-16.18)). The occurrence of visually PET-negative lesions (20.7%) was distributed heterogeneously on an intra- and inter-individual level; the largest proportion of PET-negative metastatic lesions were lung and liver metastases. The highest physiological 68Ga-EMP-100 accumulation besides the urinary bladder content was seen in the kidneys, followed by moderate uptake in the liver and the spleen, whereas significantly lower uptake intensity was observed in the pancreas and the intestines. CONCLUSION Targeting c-MET expression, 68Ga-EMP-100 shows distinctly elevated uptake in mRCC patients with partially high inter- and intra-individual differences comprising both c-MET-positive and c-MET-negative lesions. Our first clinical results warrant further systemic studies investigating the clinical use of 68Ga-EMP-100 as a biomarker in mRCC patients

    Assessment of perfusion deficit with early phases of [18F]PI-2620 tau-PET versus [18F]flutemetamol-amyloid-PET recordings.

    Get PDF
    PURPOSE Characteristic features of amyloid-PET (A), tau-PET (T), and FDG-PET (N) can serve for the A/T/N classification of neurodegenerative diseases. Recent studies showed that the early, perfusion-weighted phases of amyloid- or tau-PET recordings serve to detect cerebrometabolic deficits equally to FDG-PET, therefore providing a surrogate of neuronal injury. As such, two channels of diagnostic information can be obtained in the setting of a single PET scan. However, there has hitherto been no comparison of early-phase amyloid- and tau-PET as surrogates for deficits in perfusion/metabolism. Therefore, we undertook to compare [18F]flutemetamol-amyloid-PET and [18F]PI-2620 tau-PET as "one-stop shop" dual purpose tracers for the detection of neurodegenerative disease. METHODS We obtained early-phase PET recordings with [18F]PI-2620 (0.5-2.5 min p.i.) and [18F]flutemetamol (0-10 min p.i.) in 64 patients with suspected neurodegenerative disease. We contrasted global mean normalized images (SUVr) in the patients with a normal cohort of 15 volunteers without evidence of increased pathology to β-amyloid- and tau-PET examinations. Regional group differences of tracer uptake (z-scores) of 246 Brainnetome volumes of interest were calculated for both tracers, and the correlations of the z-scores were evaluated using Pearson's correlation coefficient. Lobar compartments, regions with significant neuronal injury (z-scores <  - 3), and patients with different neurodegenerative disease entities (e.g., Alzheimer's disease or 4R-tauopathies) served for subgroup analysis. Additionally, we used partial regression to correlate regional perfusion alterations with clinical scores in cognition tests. RESULTS The z-scores of perfusion-weighted images of both tracers showed high correlations across the brain, especially in the frontal and parietal lobes, which were the brain regions with pronounced perfusion deficit in the patient group (R = 0.83 ± 0.08; range, 0.61-0.95). Z-scores of individual patients correlated well by region (R = 0.57 ± 0.15; range, 0.16-0.90), notably when significant perfusion deficits were present (R = 0.66 ± 0.15; range, 0.28-0.90). CONCLUSION The early perfusion phases of [18F]PI-2620 tau- and [18F]flutemetamol-amyloid-PET are roughly equivalent indices of perfusion defect indicative of regional and lobar neuronal injury in patients with various neurodegenerative diseases. As such, either tracer may serve for two diagnostic channels by assessment of amyloid/tau status and neuronal activity

    Superiority of Formalin-Fixed Paraffin-Embedded Brain Tissue for in vitro Assessment of Progressive Supranuclear Palsy Tau Pathology With [18F]PI-2620

    Get PDF
    Objectives: Autoradiography on brain tissue is used to validate binding targets of newly discovered radiotracers. The purpose of this study was to correlate quantification of autoradiography signal using the novel next-generation tau positron emission tomography (PET) radiotracer [18F]PI-2620 with immunohistochemically determined tau-protein load in both formalin-fixed paraffin-embedded (FFPE) and frozen tissue samples of patients with Alzheimer’s disease (AD) and Progressive Supranuclear Palsy (PSP). Methods: We applied [18F]PI-2620 autoradiography to postmortem cortical brain samples of six patients with AD, five patients with PSP and five healthy controls, respectively. Binding intensity was compared between both tissue types and different disease entities. Autoradiography signal quantification (CWMR = cortex to white matter ratio) was correlated with the immunohistochemically assessed tau load (AT8-staining, %-area) for FFPE and frozen tissue samples in the different disease entities. Results: In AD tissue, relative cortical tracer binding was higher in frozen samples when compared to FFPE samples (CWMRfrozen vs. CWMRFFPE: 2.5-fold, p < 0.001), whereas the opposite was observed in PSP tissue (CWMRfrozen vs. CWMRFFPE: 0.8-fold, p = 0.004). In FFPE samples, [18F]PI-2620 autoradiography tracer binding and immunohistochemical tau load correlated significantly for both PSP (R = 0.641, p < 0.001) and AD tissue (R = 0.435, p = 0.016), indicating a high agreement of relative tracer binding with underlying pathology. In frozen tissue, the correlation between autoradiography and immunohistochemistry was only present in AD (R = 0.417, p = 0.014) but not in PSP tissue (R = −0.115, p = n.s.). Conclusion: Our head-to-head comparison indicates that FFPE samples show superiority over frozen samples for autoradiography assessment of PSP tau pathology by [18F]PI-2620. The [18F]PI-2620 autoradiography signal in FFPE samples reflects AT8 positive tau in samples of both PSP and AD patients

    Dosimetry and optimal scan time of 18FSiTATE-PET/CT in patients with neuroendocrine tumours

    Get PDF
    PURPOSE Radiolabelled somatostatin analogues targeting somatostatin receptors (SSR) are well established for combined positron emission tomography/computer tomography (PET/CT) imaging of neuroendocrine tumours (NET). 18FSiTATE has recently been introduced showing high image quality, promising clinical performance and improved logistics compared to the clinical reference standard 68Ga-DOTA-TOC. Here we present the first dosimetry and optimal scan time analysis. METHODS Eight NET patients received a 18FSiTATE-PET/CT (250 ± 66~MBq) with repeated emission scans (10, 30, 60, 120, 180~min after injection). Biodistribution in normal organs and SSR-positive tumour uptake were assessed. Dosimetry estimates for risk organs were determined using a combined linear-monoexponential model, and by applying 18F S-values and reference target masses for the ICRP89 adult male or female (OLINDA 2.0). Tumour-to-background ratios were compared quantitatively and visually between different scan times. RESULTS After 1 h, normal organs showed similar tracer uptake with only negligible changes until 3 h post-injection. In contrast, tracer uptake by tumours increased progressively for almost all types of metastases, thus increasing tumour-to-background ratios over time. Dosimetry resulted in a total effective dose of 0.015 ± 0.004~mSv/MBq. Visual evaluation revealed no clinically relevant discrepancies between later scan times, but image quality was rated highest in 60 and 120~min images. CONCLUSION 18FSiTATE-PET/CT in NET shows overall high tumour-to-background ratios from 60 to 180~min after injection and an effective dose comparable to 68Ga-labelled alternatives. For clinical use of 18FSiTATE, the best compromise between image quality and tumour-to-background contrast is reached at 120~min, followed by 60~min after injection

    Impact of Partial Volume Correction on [18F]GE-180 PET Quantification in Subcortical Brain Regions of Patients with Corticobasal Syndrome.

    Get PDF
    Corticobasal syndrome (CBS) is a rare neurodegenerative condition characterized by four-repeat tau aggregation in the cortical and subcortical brain regions and accompanied by severe atrophy. The aim of this study was to evaluate partial volume effect correction (PVEC) in patients with CBS compared to a control cohort imaged with the 18-kDa translocator protein (TSPO) positron emission tomography (PET) tracer [18F]GE-180. Eighteen patients with CBS and 12 age- and sex-matched healthy controls underwent [18F]GE-180 PET. The cortical and subcortical regions were delineated by deep nuclei parcellation (DNP) of a 3D-T1 MRI. Region-specific subcortical volumes and standardized uptake values and ratios (SUV and SUVr) were extracted before and after region-based voxel-wise PVEC. Regional volumes were compared between patients with CBS and controls. The % group differences and effect sizes (CBS vs. controls) of uncorrected and PVE-corrected SUVr data were compared. Single-region positivity in patients with CBS was assessed by a >2 SD threshold vs. controls and compared between uncorrected and PVE-corrected data. Smaller regional volumes were detected in patients with CBS compared to controls in the right ventral striatum (p = 0.041), the left putamen (p = 0.005), the right putamen (p = 0.038) and the left pallidum (p = 0.015). After applying PVEC, the % group differences were distinctly higher, but the effect sizes of TSPO uptake were only slightly stronger due to the higher variance after PVEC. The single-region positivity of TSPO PET increased in patients with CBS after PVEC (100 vs. 83 regions). PVEC in the cortical and subcortical regions is valuable for TSPO imaging of patients with CBS, leading to the improved detection of elevated [18F]GE-180 uptake, although the effect sizes in the comparison against the controls did not improve strongly

    Chronic PPARγ Stimulation Shifts Amyloidosis to Higher Fibrillarity but Improves Cognition.

    Get PDF
    We undertook longitudinal β-amyloid positron emission tomography (Aβ-PET) imaging as a translational tool for monitoring of chronic treatment with the peroxisome proliferator-activated receptor gamma (PPARγ) agonist pioglitazone in Aβ model mice. We thus tested the hypothesis this treatment would rescue from increases of the Aβ-PET signal while promoting spatial learning and preservation of synaptic density. Here, we investigated longitudinally for 5 months PS2APP mice (N = 23; baseline age: 8 months) and App NL-G-F mice (N = 37; baseline age: 5 months) using Aβ-PET. Groups of mice were treated with pioglitazone or vehicle during the follow-up interval. We tested spatial memory performance and confirmed terminal PET findings by immunohistochemical and biochemistry analyses. Surprisingly, Aβ-PET and immunohistochemistry revealed a shift toward higher fibrillary composition of Aβ-plaques during upon chronic pioglitazone treatment. Nonetheless, synaptic density and spatial learning were improved in transgenic mice with pioglitazone treatment, in association with the increased plaque fibrillarity. These translational data suggest that a shift toward higher plaque fibrillarity protects cognitive function and brain integrity. Increases in the Aβ-PET signal upon immunomodulatory treatments targeting Aβ aggregation can thus be protective
    corecore