768 research outputs found

    On the effect of metal loading on the reducibility and redox chemistry of ceria supported Pd catalysts

    Get PDF
    The effect of Pd loading on the redox characteristics of a ceria support was examined using in situ Pd K-edge XAS, Ce L3-edge XAS and in situ X-ray diffraction techniques. Analysis of the data obtained from these techniques indicates that the onset temperature for the partial reduction of Ce(IV) to Ce(III), by exposure to H2, varies inversely with the loading of Pd. Whilst the onset and completion temperatures of the reduction of Ce(IV) to Ce(III) are different, both samples yield the same maximal fraction of Ce(III) formation independent of Pd loading. Furthermore, the partial reduction of Ce is found to be concurrent with the reduction of PdO and demonstrated that the presence of metallic Pd is necessary for the reduction of the CeO2 support. Upon passivation by room temperature oxidation, a full oxidation of the reduced ceria support was observed. However, only a mild surface oxidation of Pd was identified. The mild passivation of the Pd is found to lead to a highly reactive sample upon a second reduction by H2. The onset of the reduction of Pd and Ce has been demonstrated to be independent of the Pd loading after a mild passivation with both samples exhibiting near room temperature reduction in the presence of H2

    Liquid metal–organic frameworks

    Get PDF
    Metal–organic frameworks are a family of chemically diverse materials, with applications in a wide range of fields covering engineering, physics, chemistry, biology and medicine. Until recently research has focused almost entirely on crystalline structures, yet now a clear trend is emerging shifting the emphasis onto disordered states including “defective by design” crystals, as well as amorphous phases such as glasses and gels. Here we introduce a strongly associated MOF liquid, obtained by melting a zeolitic imidazolate framework (ZIF). We combine in-situ variable temperature X-ray, ex-situ neutron pair distribution function experiments, and first principles molecular dynamics simulations to study the melting phenomenon and the nature of the liquid obtained. We demonstrate from structural, dynamical, and thermodynamical information that the chemical configuration, coordinative bonding, and porosity of the parent crystalline framework survive upon formation of the MOF liquid.This work benefitted from the financial support of ANRT (thèse CIFRE 2015/0268). We acknowledge access to HPC platforms provided by a GENCI grant (A0010807069). TDB would like to thank the Royal Society for a University Research Fellowship

    In vivo Expansion of Naïve CD4+CD25high FOXP3+ Regulatory T Cells in Patients with Colorectal Carcinoma after IL-2 Administration

    Get PDF
    Regulatory T cells (Treg cells) are increased in context of malignancies and their expansion can be correlated with higher disease burden and decreased survival. Initially, interleukin 2 (IL-2) has been used as T-cell growth factor in clinical vaccination trials. In murine models, however, a role of IL-2 in development, differentiation, homeostasis, and function of Treg cells was established. In IL-2 treated cancer patients a further Treg-cell expansion was described, yet, the mechanism of expansion is still elusive. Here we report that functional Treg cells of a naïve phenotype - as determined by CCR7 and CD45RA expression - are significantly expanded in colorectal cancer patients. Treatment of 15 UICC stage IV colorectal cancer patients with IL-2 in a phase I/II peptide vaccination trial further enlarges the already increased naïve Treg-cell pool. Higher frequencies of T-cell receptor excision circles in naïve Treg cells indicate IL-2 dependent thymic generation of naïve Treg cells as a mechanism leading to increased frequencies of Treg cells post IL-2 treatment in cancer patients. This finding could be confirmed in naïve murine Treg cells after IL-2 administration. These results point to a more complex regulation of Treg cells in context of IL-2 administration. Future strategies therefore might aim at combining IL-2 therapy with novel strategies to circumvent expansion and differentiation of naïve Treg cells

    Risk‐sensitive planning for conserving coral reefs under rapid climate change

    Get PDF
    Coral reef ecosystems are seriously threatened by changing conditions in the ocean. Although many factors are implicated, climate change has emerged as a dominant and rapidly growing threat. Developing a long‐term strategic plan for the conservation of coral reefs is urgently needed yet is complicated by significant uncertainty associated with climate change impacts on coral reef ecosystems. We use Modern Portfolio Theory to identify coral reef locations globally that, in the absence of other impacts, are likely to have a heightened chance of surviving projected climate changes relative to other reefs. Long‐term planning that is robust to uncertainty in future conditions provides an objective and transparent framework for guiding conservation action and strategic investment. These locations constitute important opportunities for novel conservation investments to secure less vulnerable yet well‐connected coral reefs that may, in turn, help to repopulate degraded areas in the event that the climate has stabilized

    Lymphocyte subsets and the role of Th1/Th2 balance in stressed chronic pain patients

    Get PDF
    Background: The complex regional pain syndrome (CRPS) and fibromyalgia (FM) are chronic pain syndromes occurring in highly stressed individuals. Despite the known connection between the nervous system and immune cells, information on distribution of lymphocyte subsets under stress and pain conditions is limited. Methods: We performed a comparative study in 15 patients with CRPS type I, 22 patients with FM and 37 age- and sex-matched healthy controls and investigated the influence of pain and stress on lymphocyte number, subpopulations and the Th1/Th2 cytokine ratio in T lymphocytes. Results: Lymphocyte numbers did not differ between groups. Quantitative analyses of lymphocyte subpopulations showed a significant reduction of cytotoxic CD8+ lymphocytes in both CRPS (p < 0.01) and FM (p < 0.05) patients as compared with healthy controls. Additionally, CRPS patients were characterized by a lower percentage of IL-2-producing T cell subpopulations reflecting a diminished Th1 response in contrast to no changes in the Th2 cytokine profile. Conclusions: Future studies are warranted to answer whether such immunological changes play a pathogenetic role in CRPS and FM or merely reflect the consequences of a pain-induced neurohumoral stress response, and whether they contribute to immunosuppression in stressed chronic pain patients. Copyright (c) 2008 S. Karger AG, Basel

    PPAR? Downregulation by TGF in Fibroblast and Impaired Expression and Function in Systemic Sclerosis: A Novel Mechanism for Progressive Fibrogenesis

    Get PDF
    The nuclear orphan receptor peroxisome proliferator-activated receptor-gamma (PPAR-γ) is expressed in multiple cell types in addition to adipocytes. Upon its activation by natural ligands such as fatty acids and eicosanoids, or by synthetic agonists such as rosiglitazone, PPAR-γ regulates adipogenesis, glucose uptake and inflammatory responses. Recent studies establish a novel role for PPAR-γ signaling as an endogenous mechanism for regulating transforming growth factor-ß (TGF-ß)- dependent fibrogenesis. Here, we sought to characterize PPAR-γ function in the prototypic fibrosing disorder systemic sclerosis (SSc), and delineate the factors governing PPAR-γ expression. We report that PPAR-γ levels were markedly diminished in skin and lung biopsies from patients with SSc, and in fibroblasts explanted from the lesional skin. In normal fibroblasts, treatment with TGF-ß resulted in a time- and dose-dependent down-regulation of PPAR-γ expression. Inhibition occurred at the transcriptional level and was mediated via canonical Smad signal transduction. Genome-wide expression profiling of SSc skin biopsies revealed a marked attenuation of PPAR-γ levels and transcriptional activity in a subset of patients with diffuse cutaneous SSc, which was correlated with the presence of a ''TGF-ß responsive gene signature'' in these biopsies. Together, these results demonstrate that the expression and function of PPAR-γ are impaired in SSc, and reveal the existence of a reciprocal inhibitory cross-talk between TGF-ß activation and PPAR-γ signaling in the context of fibrogenesis. In light of the potent anti-fibrotic effects attributed to PPAR-γ, these observations lead us to propose that excessive TGF-ß activity in SSc accounts for impaired PPAR-γ function, which in turn contributes to unchecked fibroblast activation and progressive fibrosis. © 2010 Wei et al

    Structure of Nano-sized CeO2 Materials: Combined Scattering and Spectroscopic Investigations

    Get PDF
    The structure of several nano‐sized ceria, CeO2, systems was investigated using neutron and X‐ray diffraction and X‐ray absorption spectroscopy. Whilst both diffraction and total pair distribution functions (PDFs) revealed that in all of the samples the occupancy of both Ce4+ and O2− are very close to the ideal stoichiometry, the analysis using Reverse Monte Carlo technique revealed significant disorder around oxygen atoms in the nano‐sized ceria samples in comparison to the highly crystalline NIST standard. In addition, the analysis revealed that the main differences observed in the pair correlations from various X‐ray and neutron diffraction techniques were attributable to the particle size of the CeO2 prepared by the reported three methods. Furthermore, detailed analysis of the Ce L3‐ and K‐edge EXAFS data support this finding; in particular the decrease in higher shell coordination numbers with respect to the NIST standard, is attributed to differences in particle size

    Modeling SAGE tag formation and its effects on data interpretation within a Bayesian framework

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Serial Analysis of Gene Expression (SAGE) is a high-throughput method for inferring mRNA expression levels from the experimentally generated sequence based tags. Standard analyses of SAGE data, however, ignore the fact that the probability of generating an observable tag varies across genes and between experiments. As a consequence, these analyses result in biased estimators and posterior probability intervals for gene expression levels in the transcriptome.</p> <p>Results</p> <p>Using the yeast <it>Saccharomyces cerevisiae </it>as an example, we introduce a new Bayesian method of data analysis which is based on a model of SAGE tag formation. Our approach incorporates the variation in the probability of tag formation into the interpretation of SAGE data and allows us to derive exact joint and approximate marginal posterior distributions for the mRNA frequency of genes detectable using SAGE. Our analysis of these distributions indicates that the frequency of a gene in the tag pool is influenced by its mRNA frequency, the cleavage efficiency of the anchoring enzyme (AE), and the number of informative and uninformative AE cleavage sites within its mRNA.</p> <p>Conclusion</p> <p>With a mechanistic, model based approach for SAGE data analysis, we find that inter-genic variation in SAGE tag formation is large. However, this variation can be estimated and, importantly, accounted for using the methods we develop here. As a result, SAGE based estimates of mRNA frequencies can be adjusted to remove the bias introduced by the SAGE tag formation process.</p

    Effect of Spermidine on Misfolding and Interactions of Alpha-Synuclein

    Get PDF
    Alpha-synuclein (α-Syn) is a 140 aa presynaptic protein which belongs to a group of natively unfolded proteins that are unstructured in aqueous solutions. The aggregation rate of α-Syn is accelerated in the presence of physiological levels of cellular polyamines. Here we applied single molecule AFM force spectroscopy to characterize the effect of spermidine on the very first stages of α-Syn aggregation – misfolding and assembly into dimers. Two α-Syn variants, the wild-type (WT) protein and A30P, were studied. The two protein molecules were covalently immobilized at the C-terminus, one at the AFM tip and the other on the substrate, and intermolecular interactions between the two molecules were measured by multiple approach-retraction cycles. At conditions close to physiological ones at which α-Syn misfolding is a rare event, the addition of spermidine leads to a dramatic increase in the propensity of the WT and mutant proteins to misfold. Importantly, misfolding is characterized by a set of conformations, and A30P changes the misfolding pattern as well as the strength of the intermolecular interactions. Together with the fact that spermidine facilitates late stages of α-Syn aggregation, our data demonstrate that spermidine promotes the very early stages of protein aggregation including α-Syn misfolding and dimerization. This finding suggests that increased levels of spermidine and potentially other polyamines can initiate the disease-related process of α-Syn

    Advances of genomic science and systems biology in renal transplantation: a review

    Get PDF
    The diagnosis of rejection in kidney transplant patients is based on histologic classification of a graft biopsy. The current “gold standard” is the Banff 97 criteria; however, there are several limitations in classifying rejection based on biopsy samples. First, a biopsy involves an invasive procedure. Second, there is significant variance among blinded pathologists in the interpretation of a biopsy. And third, there is also variance between the histology and the molecular profiles of a biopsy. To increase the positive predictive value of classifiers of rejection, a Banff committee is developing criteria that integrate histologic and molecular data into a unified classifier that could diagnose and prognose rejection. To develop the most appropriate molecular criteria, there have been studies by multiple groups applying omics technologies in attempts to identify biomarkers of rejection. In this review, we discuss studies using genome-wide data sets of the transcriptome and proteome to investigate acute rejection, chronic allograft dysfunction, and tolerance. We also discuss studies which focus on genetic biomarkers in urine and peripheral blood, which will provide clinicians with minimally invasive methods for monitoring transplant patients. We also discuss emerging technologies, including whole-exome sequencing and RNA-Seq and new bioinformatic and systems biology approaches, which should increase the ability to develop both biomarkers and mechanistic understanding of the rejection process
    corecore