3,032 research outputs found

    Joint claims for JSA evaluation: synthesis of findings

    Get PDF

    Bioaccessibility and human health risk : chromium in Glasgow

    Get PDF
    The assessment of risk to human health from contaminated land is based on a comparison of predicted human exposure to a contaminant with a Health Criteria Value (HCV) that represents an exposure below which there is thought to be little or no risk to human health. Most assessment tools, such as the Contaminated Land Exposure Assessment Model (CLEA), use estimates of exposure based on intake (consumption rate) rather than on measures of uptake (the amount of contaminant which enters the bloodstream), thus allowing comparison with HCVs, which are also based on intake apposed to uptake. Soil Guideline Values (SGVs) derived using the CLEA model assume that a soil contaminant will be taken up into the body to the same extent as from the medium of exposure used to derive the oral HCV (e.g. soluble salts of Cr(VI)). This is a conservative assumption as contaminants can be tightly bound to other soil components, thus reducing bioavailability (the fraction of a contaminant that can be absorbed by the body)

    Spectrum of a magnetized strong-leg quantum spin ladder

    Full text link
    Inelastic neutron scattering is used to measure the spin excitation spectrum of the Heisenberg S=1/2S=1/2 ladder material (C7_7H10_10N)2_2CuBr4_4 in its entirety, both in the gapped spin-liquid and the magnetic field induced Tomonaga-Luttinger spin liquid regimes. A fundamental change of the spin dynamics is observed between these two regimes. DMRG calculations quantitatively reproduce and help understand the observed commensurate and incommensurate excitations. The results validate long-standing quantum field theoretical predictions, but also test the limits of that approach

    On a self-sustained process at large scale in the turbulent channel flow

    Get PDF
    Large-scale motions, important in turbulent shear flows, are frequently attributed to the interaction of structures at smaller scale. Here we show that, in a turbulent channel at Re_{\tau} \approx 550, large-scale motions can self-sustain even when smaller-scale structures populating the near-wall and logarithmic regions are artificially quenched. This large-scale self-sustained mechanism is not active in periodic boxes of width smaller than Lz ~ 1.5h or length shorter than Lx ~ 3h which correspond well to the most energetic large scales observed in the turbulent channel

    Crystalline Electric Field Randomness in the Triangular Lattice Spin-Liquid YbMgGaO4_4

    Full text link
    We apply moderate-high-energy inelastic neutron scattering (INS) measurements to investigate Yb3+^{3+} crystalline electric field (CEF) levels in the triangular spin-liquid candidate YbMgGaO4_4. Three CEF excitations from the ground-state Kramers doublet are centered at the energies ℏω\hbar \omega = 39, 61, and 97\,meV in agreement with the effective \mbox{spin-1/2} gg-factors and experimental heat capacity, but reveal sizable broadening. We argue that this broadening originates from the site mixing between Mg2+^{2+} and Ga3+^{3+} giving rise to a distribution of Yb--O distances and orientations and, thus, of CEF parameters that account for the peculiar energy profile of the CEF excitations. The CEF randomness gives rise to a distribution of the effective spin-1/2 gg-factors and explains the unprecedented broadening of low-energy magnetic excitations in the fully polarized ferromagnetic phase of YbMgGaO4_4, although a distribution of magnetic couplings due to the Mg/Ga disorder may be important as well.Comment: Accepted in Phys. Rev. Let

    Nearest-neighbor resonating valence bonds in YbMgGaO4

    Get PDF
    Since its proposal by Anderson, resonating valence bonds (RVB) formed by a superposition of fluctuating singlet pairs have been a paradigmatic concept in understanding quantum spin liquids (QSL). Here, we show that excitations related to singlet breaking on nearest-neighbor bonds describe the high-energy part of the excitation spectrum in YbMgGaO4, the effective spin-1/2 frustrated antiferromagnet on the triangular lattice, as originally considered by Anderson. By a thorough single-crystal inelastic neutron scattering (INS) study, we demonstrate that nearest-neighbor RVB excitations account for the bulk of the spectral weight above 0.5 meV. This renders YbMgGaO4 the first experimental system where putative RVB correlations restricted to nearest neighbors are observed, and poses a fundamental question of how complex interactions on the triangular lattice conspire to form this unique many-body state.Comment: To be published in Nature Communication
    • …
    corecore