3,240 research outputs found
Cosmic string Y-junctions: a comparison between field theoretic and Nambu-Goto dynamics
We explore the formation of cosmic string Y-junctions when strings of two
different types collide, which has recently become important since string
theory can yield cosmic strings of distinct types. Using a model containing two
types of local U(1) string and stable composites, we simulate the collision of
two straight strings and investigate whether the dynamics matches that
previously obtained using the Nambu-Goto action, which is not strictly valid
close to the junction. We find that the Nambu-Goto action performs only
moderately well at predicting when the collision results in the formation of a
pair of Y-junctions (with a composite string connecting them). However, we find
that when they do form, the late time dynamics matches those of the Nambu-Goto
approximation very closely. We also see little radiative emission from the
Y-junction system, which suggests that radiative decay due to bridge formation
does not appear to be a means via which a cosmological network of such string
would rapidly lose energy.Comment: 17 pages, 17 figures; typo correctio
Crustal Shortening Rates in Correlation to Structural Geology in the Sub-Andean Zone of Bolivia
The fold and thrust belt of the Bolivian Sub-Andes has been a topic of much discussion and debate for the past twenty years. Varying ideas regarding the Sub-Andean zone (SAZ) structural geology have been published, documenting conflicting ideas on the evolution of this complex region. Variations in balanced cross-sections result in a wide range of shortening estimates, thus highlighting the need for accuracy and precision when constructing balanced cross-sections.Shell Oil Corp
Detecting and distinguishing topological defects in future data from the CMBPol satellite
The proposed CMBPol mission will be able to detect the imprint of topological defects on the CMB provided the contribution is sufficiently strong. We quantify the detection threshold for cosmic strings and for textures, and analyze the satellite's ability to distinguish between these different types of defects. We also assess the level of danger of misidentification of a defect signature as from the wrong defect type or as an effect of primordial gravitational waves. A 0.002 fractional contribution of cosmic strings to the CMB temperature spectrum at multipole ten, and similarly a 0.001 fractional contribution of textures, can be detected and correctly identified at the 3 level. We also confirm that a tensor contribution of r=0.0018 can be detected at over 3, in agreement with the CMBPol mission concept study. These results are supported by a model selection analysis
Abelian Higgs Cosmic Strings: Small Scale Structure and Loops
Classical lattice simulations of the Abelian Higgs model are used to
investigate small scale structure and loop distributions in cosmic string
networks. Use of the field theory ensures that the small-scale physics is
captured correctly. The results confirm analytic predictions of Polchinski &
Rocha [1] for the two-point correlation function of the string tangent vector,
with a power law from length scales of order the string core width up to
horizon scale with evidence to suggest that the small scale structure builds up
from small scales. An analysis of the size distribution of string loops gives a
very low number density, of order 1 per horizon volume, in contrast with
Nambu-Goto simulations. Further, our loop distribution function does not
support the detailed analytic predictions for loop production derived by Dubath
et al. [2]. Better agreement to our data is found with a model based on loop
fragmentation [3], coupled with a constant rate of energy loss into massive
radiation. Our results show a strong energy loss mechanism which allows the
string network to scale without gravitational radiation, but which is not due
to the production of string width loops. From evidence of small scale structure
we argue a partial explanation for the scale separation problem of how energy
in the very low frequency modes of the string network is transformed into the
very high frequency modes of gauge and Higgs radiation. We propose a picture of
string network evolution which reconciles the apparent differences between
Nambu-Goto and field theory simulations.Comment: 16 pages, 17 figure
- …
