2,095 research outputs found

    W^+W^+ plus dijet production in the POWHEGBOX

    Get PDF
    We present an implementation of the calculation of the production of W^+W^+ plus two jets at hadron colliders, at next-to-leading order (NLO) in QCD, in the POWHEG framework, which is a method that allows the interfacing of NLO calculations to shower Monte Carlo programs. This is the first 2 -> 4 process to be described to NLO accuracy within a shower Monte Carlo framework. The implementation was built within the POWHEGBOX package. We discuss a few technical improvements that were needed in the POWHEGBOX to deal with the computer intensive nature of the NLO calculation, and argue that further improvements are possible, so that the method can match the complexity that is reached today in NLO calculations. We have interfaced our POWHEG implementation with PYTHIA and HERWIG, and present some phenomenological results, discussing similarities and differences between the pure NLO and the POWHEG+PYTHIA calculation both for inclusive and more exclusive distributions. We have made the relevant code available at the POWHEGBOX web site.Comment: 16 pages, 5 figure

    A complete parton level analysis of boson-boson scattering and ElectroWeak Symmetry Breaking in lv + four jets production at the LHC

    Full text link
    A complete parton level analysis of lv + four jets production at the LHC is presented, including all processes at order O(alpha^6), O(alpha^4*alpha_s^2) and O(alpha^2*alpha_s^4). The infinite Higgs mass scenario, which is considered as a benchmark for strong scattering theories and is the limiting case for composite Higgs models, is confronted with the Standard Model light Higgs predictions in order to determine whether a composite Higgs signal can be detected as an excess of events in boson--boson scattering.Comment: More detailed discussion of the effects of the reconstruction of the longitudinal neutrino momentum. Improved figures. To be published in JHE

    Observations and analysis of polar stratospheric clouds detected by POAM III and SAGE III during the SOLVE II/VINTERSOL campaign in the 2002/2003 Northern Hemisphere winter

    Get PDF
    The Polar Ozone and Aerosol Measurement and Stratospheric Aerosol and Gas Experiment instruments both observed high numbers of polar stratospheric clouds (PSCs) in the polar region during the second SAGE Ozone Loss and Validation (SOLVE II) and Validation of INTERnational Satellites and Study of Ozone Loss (VINTERSOL) campaign, conducted during the 2002/2003 Northern Hemisphere winter. Between 15 November 2002 (14 November 2002) and 18 March 2003 (21 March 2003) SAGE (POAM) observed 122 (151) aerosol extinction profiles containing PSCs. PSCs were observed on an almost daily basis, from early December through 15 January, in both instruments. No PSCs were observed from either instrument from 15 January until 4 February, and from then only sparingly in three periods in mid- and late February and mid-March. In early December, PSCs were observed in the potential temperature range from roughly 375 K to 750 K. Throughout December the top of this range decreases to near 600 K. In February and March, PSC observations were primarily constrained to potential temperatures below 500 K. The PSC observation frequency as a function of ambient temperature relative to the nitric acid-trihydrate saturation point (using a nitric acid profile prior to denitrification) was used to infer irreversible denitrification. By late December 38% denitrification was inferred at both the 400–475 K and 475–550 K potential temperature ranges. By early January extensive levels of denitrification near 80% were inferred at both potential temperature ranges, and the air remained denitrified at least through early March

    Successful Demonstration of Relieving CO2-Solid-Forming Streams through a Pressure Relief System

    Get PDF
    PresentationThe demand for natural gas, considered the cleanest burning hydrocarbon fuel available, is expected to rise significantly over the foreseeable future. However, natural gas produced from many major reservoirs can contain significant amounts of carbon dioxide (CO2) and must be treated before it can be used as an environmentally acceptable fuel. These treatment processes often require high-pressure operations forming highly concentrated CO2-rich streams. Pressure protection for these systems has been challenging to date because of the potential for solids generation upon pressure let down and the consequent potential for plugging that the solids present. ExxonMobil has completed successful field demonstrations relieving dehydrated, CO2-rich liquid and vapor streams forming up to 40 wt% solids in relief lines. The results of these field demonstration tests as well as learnings from design of CO2-solid-forming relief systems are discussed in this paper

    How well can the LHC distinguish between the SM light Higgs scenario, a composite Higgs and the Higgsless case using VV scattering channels?

    Full text link
    A complete parton level analysis of ll + four jets l = e,mu and 3lv + two jets production at the LHC is presented, including all processes at order \ordEW, \ordQCD and \ordQCDsq when appropriate. The infinite Higgs mass scenario, which is considered as a benchmark for strong scattering theories and is the limiting case for composite Higgs models, and one example of a model incorporating a Strongly Interacting Light Higgs are confronted with the Standard Model light Higgs predictions. This analysis is combined with the results in the lv + four jets channel presented in a previous paper, in order to determine whether a composite Higgs signal can be detected as an excess of events in boson--boson scattering.Comment: Introduced some representative Feynman diagrams. Rearranged section 4. Typos fixed. Published in JHE

    Effects of pitch and musical sounds on body-representations when moving with sound

    Get PDF
    The effects of music on bodily movement and feelings, such as when people are dancing or engaged in physical activity, are well-documented—people may move in response to the sound cues, feel powerful, less tired. How sounds and bodily movements relate to create such effects? Here we deconstruct the problem and investigate how different auditory features affect people’s body-representation and feelings even when paired with the same movement. In three experiments, participants executed a simple arm raise synchronised with changing pitch in simple tones (Experiment 1), rich musical sounds (Experiment 2) and within different frequency ranges (Experiment 3), while we recorded indirect and direct measures on their movement, body-representations and feelings. Changes in pitch influenced people’s general emotional state as well as the various bodily dimensions investigated—movement, proprioceptive awareness and feelings about one’s body and movement. Adding harmonic content amplified the differences between ascending and descending sounds, while shifting the absolute frequency range had a general effect on movement amplitude, bodily feelings and emotional state. These results provide new insights in the role of auditory and musical features in dance and exercise, and have implications for the design of sound-based applications supporting movement expression, physical activity, or rehabilitation

    Feynman Rules for the Rational Part of the Standard Model One-loop Amplitudes in the 't Hooft-Veltman γ5\gamma_5 Scheme

    Full text link
    We study Feynman rules for the rational part RR of the Standard Model amplitudes at one-loop level in the 't Hooft-Veltman γ5\gamma_5 scheme. Comparing our results for quantum chromodynamics and electroweak 1-loop amplitudes with that obtained based on the Kreimer-Korner-Schilcher (KKS) γ5\gamma_5 scheme, we find the latter result can be recovered when our γ5\gamma_5 scheme becomes identical (by setting g5s=1g5s=1 in our expressions) with the KKS scheme. As an independent check, we also calculate Feynman rules obtained in the KKS scheme, finding our results in complete agreement with formulae presented in the literature. Our results, which are studied in two different γ5\gamma_5 schemes, may be useful for clarifying the γ5\gamma_5 problem in dimensional regularization. They are helpful to eliminate or find ambiguities arising from different dimensional regularization schemes.Comment: Version published in JHEP, presentation improved, 41 pages, 10 figure

    NLO QCD corrections to off-shell top-antitop production with leptonic decays at hadron colliders

    Full text link
    We present details of a calculation of the cross section for hadronic top-antitop production in next-to-leading order (NLO) QCD, including the decays of the top and antitop into bottom quarks and leptons. This calculation is based on matrix elements for \nu e e+ \mu- \bar{\nu}_{\mu}b\bar{b} production and includes all non-resonant diagrams, interferences, and off-shell effects of the top quarks. Such contributions are formally suppressed by the top-quark width and turn out to be small in the inclusive cross section. However, they can be strongly enhanced in exclusive observables that play an important role in Higgs and new-physics searches. Also non-resonant and off-shell effects due to the finite W-boson width are investigated in detail, but their impact is much smaller than naively expected. We also introduce a matching approach to improve NLO calculations involving intermediate unstable particles. Using a fixed QCD scale leads to perturbative instabilities in the high-energy tails of distributions, but an appropriate dynamical scale stabilises NLO predictions. Numerical results for the total cross section, several distributions, and asymmetries are presented for Tevatron and the LHC at 7 TeV, 8 TeV, and 14 TeV.Comment: 61 pp. Matches version published in JHEP; one more reference adde
    • …
    corecore