9,984 research outputs found

    The Best Mixing Time for Random Walks on Trees

    Full text link
    We characterize the extremal structures for mixing walks on trees that start from the most advantageous vertex. Let G=(V,E)G=(V,E) be a tree with stationary distribution π\pi. For a vertex vVv \in V, let H(v,π)H(v,\pi) denote the expected length of an optimal stopping rule from vv to π\pi. The \emph{best mixing time} for GG is minvVH(v,π)\min_{v \in V} H(v,\pi). We show that among all trees with V=n|V|=n, the best mixing time is minimized uniquely by the star. For even nn, the best mixing time is maximized by the uniquely path. Surprising, for odd nn, the best mixing time is maximized uniquely by a path of length n1n-1 with a single leaf adjacent to one central vertex.Comment: 25 pages, 7 figures, 3 table

    Contesting neoliberalism in an ‘activist city’: working towards the urban commons in Berlin

    Get PDF
    No abstract available

    Two-Dimensional Pursuit-Evasion in a Compact Domain with Piecewise Analytic Boundary

    Full text link
    In a pursuit-evasion game, a team of pursuers attempt to capture an evader. The players alternate turns, move with equal speed, and have full information about the state of the game. We consider the most restictive capture condition: a pursuer must become colocated with the evader to win the game. We prove two general results about pursuit-evasion games in topological spaces. First, we show that one pursuer has a winning strategy in any CAT(0) space under this restrictive capture criterion. This complements a result of Alexander, Bishop and Ghrist, who provide a winning strategy for a game with positive capture radius. Second, we consider the game played in a compact domain in Euclidean two-space with piecewise analytic boundary and arbitrary Euler characteristic. We show that three pursuers always have a winning strategy by extending recent work of Bhadauria, Klein, Isler and Suri from polygonal environments to our more general setting.Comment: 21 pages, 6 figure

    Dvorak's Eighth Symphony: A Response to Tchaikovsky?

    Get PDF

    The improved management of small-scale cage culture in Asia: final technical report

    Get PDF
    The purpose of the project is to develop sustained small-scale cage fish culture in inland and coastal waters through improved understanding of the social, institutional and resource environment of resource poor groups. Two Asian countries, Bangladesh (inland systems) and Vietnam (marine), were studied with this workshop bringing together both sides of the project together with representatives of collaborative institutions, government departments and universities. Addressing the overall aim of producing guidelines for the planning and extension of cage aquaculture in Asia a combination of group work and plenary discussion was conducted producing the following outputs. 1) An assessment of cage aquaculture potential, 2) Development options for small-scale cage culture, 3) A review of tools and methodologies and 4) Policy initiatives for sustainable cage culture development. Key issues raised were the use of outputs as a guide to be adapted to regional circumstances to facilitate farmer and extension worker discussion and not as a rigid methodology. The degree of linkage between development, research and government institutions was also considered a crucial factor in benefiting the research and development of cage culture at the local, regional and national level and vital in affecting the future policies by both development and government institutions. [PDF contains 242 pages

    A control volume based formulation of the discrete Kirchoff triangular thin plate bending element

    Get PDF
    A control volume method is presented for predicting the displacement and rotation of thin transversely loaded flat plates. The new procedure uses discrete Kirchoff triangle (DKT) elements but introduces a dual mesh of interconnected control volumes (CVs) centred on the finite element (FE) vertices. Discrete equations for the unknown degrees of freedom are subsequently derived by enforcing equilibrium on these CVs; as such this implementation is a quadrature free routine. To allow a comparison, a quadrature free implementation of the DKT element, using the standard finite element procedure, was developed using symbolic methematics. The CV based procedure is validated by patch tests for a state of pure bending and twist. Convergence tests for various loading types show enhanced performance for coarse meshes over the equivalent FE method
    corecore