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ABSTRACT

A control volume method is presented for predicting the displacement and rotation of thin transversely
loaded flat plates. The new procedure uses discrete Kirchhoff triangle(DKT) elements but introduces a
dual mesh of interconnected control volumes (CVs) centred on the finite element (FE) vertices. Discrete
equations for the unknown degrees of freedom are subsequently derived by enforcing equilibrium on
these CVs; as such this implementation is a quadrature free routine. To allow a comparison, a quadrature
free implementation of the DKT element, using the standard finite element procedure, was developed
using symbolic mathematics. The CV based procedure is validated by patch testsfor a state of pure
bending and twist. Convergence tests for various loading types show enhanced performance for coarse
meshes over the equivalent FE method.

1 INTRODUCTION

Plate bending elements remain an active research area, with work focusingupon the selection of defor-
mation theory, application of suitable boundary conditions and the avoidanceof element shear locking.
Recent developments in finite volume (FV) methods have identified two different approaches, a cell
centred method that is a geometrically versatile formulation with multifaceted controlvolumes [1] and
vertex centred methods [2]. Both formulations are presented as locking free for both thick and thin
Mindlin plates. This paper presents a vertex centred FV thin plate formulation based upon the discrete
Kirchhoff triangle element [3]. The DKT element is based upon Mindlin plate theory but has Kirchhoff
constraints, that is transverse shear is zero, applied at each node giving rise to an element that converges
to the Kirchhoff thin plate solution. The solution convergence is compared against the existing finite el-
ement DKT. Both the FE-DKT and CV-DKT formulations where built upon the same moment curvature
matrix and both where solved without quadrature in order to have the best comparison of the numerical
procedures. The FV method differs from the FE by introducing a dual mesh of interconnecting control
volumes over a standard finite element mesh. The element stress resultants are then integrated around
the control volume faces and equilibrium is imposed on that CV. The resulting equilibrium equations



then relate the control volume centre unknown displacements to those at neighbouring centres, in a
manner equivalent to the relationships between nodal displacements characteristic of the FE method.
A quadrature free implementation is achieved using the symbolic maths toolbox of MATLAB which is
built upon the Maple kernel. Symbolic integration (SI) of the moment curvaturematrix is carried out in
both the FE-DKT and CV-DKT codes to obtain the element stiffness matrix.

2 Element Stiffness Matrix

As already stated both the FE and CVFE methods are founded upon the same moment curvature re-
lationships, but the formulations differ with regards to the element stiffness matrix. In the FE-DKT
element the stiffness matrix is derived using the principle of minimum potential energy, equation (1).
The CV-DKT differs from this because the stiffness matrix is composed of aset of discrete equilibrium
equations. In the finite element method the stiffness matrix for the DKT element is:

KFEM = 2A

∫
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whereB [3] is the moment curvature matrix,Db is the constitutive matrix in bending,A is the element
area andξ, η are the area coordinates of the traingular element.

To determine the stiffness matrix for the CV-DKT a dual mesh of interconnecting control volumes is
set up, with each control volume centred upon a node of the finite element mesh. The control volume
faces are constructed by connecting a point mid way along the finite element mesh edge to the centre
of area of that corresponding finite element.

The stress resultants per unit length are integrated along each face of thecontrol volume with respect
to the line coordinater, anti-clockwise around the CV node. This integration gives rise to the stress
resultants acting on each face. For a facei these areTi

z, Mi
x andM

i
y, representing the total transverse

force and total moments about thex andy axes respectively. Equations (2), (3) and (4) are thus functions
to determine the internal actions upon each face of the control volume.
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Total Moment about the y-axis:
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where(xr, yr) are the coordinates of the moment arm along the differential line,(xi, yi) are the coordi-
nates of the centre of the control volume,Mn are the bending moment resultants,Tn are the shear stress
resultants andθ denoted the inclination of the control volume face.Mn andTn are determined from the
product of the moment curvature,B, and constitutive,Db, matices

Equilibrium is imposed on the control volume by summing all the internal actions on each face for the
control volume. The equilibrium equations can be expressed as:
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whereT
E
z , M

E
x andM

E
y are any externally applied forces or moments on the control volume andn

is the number of faces for a given control volume. This is carried out foreach element in the mesh
and assembled into the global stiffness matrix in a manner analogous to the standard finite element
procedure [4].
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Now the structural equations are in a form equivalent to the finite element procedure (7),

[K]{U} = {P} (7)

where{U} is the vector of nodal displacements,{P}is the vector of externally applied force and
moments and[K] is the stiffness matrix (6). The load vector can now be modified to include applied
loads and the appropriate boundary constraints applied to the stiffness matrix as in the finite element
method. The stiffness matrix can then be solved by either a direct or iterativesolution strategy. In the
presented work the MATLAB matrix left division routine was used.

3 Implementation

In the formulation of the FE-DKT (1) and CV-DKT (6) stiffness matrices, symbolic integration, using
the Maple kernel of MATLAB, was employed. The advantage of using symbolics is that an explicit
solution to the stiffness matrix is achieved. The symbolic toolbox is capable of integrating the moment
curvature matrix in a relatively quick time, with the solution extractable to form conventional code. This
was validated by comparing the solution to the FE-DKT element stiffness matrix against the explicit
FORTRAN code of Jeychandrabose et. al. [5]. Both methods gave an identical solution. Results from
the quadrature free FE-DKT and CV-DKT elements were compared against the shell63 element of
ANSYS, a quadratic element composed of 4 DKT elements [6] where 3 point quadrature is employed
in evaluating the stiffness matrix.

4 Results

The CV-DKT has a proper rank to its stiffness matrix and passes the patch test for states of pure bending
and twist. Convergence tests of maximum displacement against increasing discretisation, for various
loading types and boundary conditions where used to asses the performance of the CV-DKT element
against the FE-DKT, quadrature free DKT, and the quadrature basedANSYS-DKT. Shown here are the
normalised central displacements for square plates of thicknessh = 0.05 with clamped boundaries,
loaded with a uniform pressure load of10N/m2 (Figure 1(a)) and a centrally applied point load of1N
(Figure 1(b)). For the uniform pressure load case it can be seen thatconvergence to the exact solution
is more rapid than in the FE equivalents. For the point load case it is noted thatthe CV-DKT method
predicts the central displacement as accurately as the quadrature free FE formulation at a given mesh
refinement.
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Figure 1: Convergence of maximum transverse displacement to thin plate theory. (a) Clamped plate
with uniform pressure load,a/b = 1 andh = 0.05. (b) Clamped plate with centrally applied point load,
a/b = 1 andh = 0.05.

5 Conclusion

A control volume based finite element method is presented for the prediction ofbending deformations
in thin plates. The method is a direct equivalent to the existing discrete Kirchhoff triangular element and
displays equivalent or better displacement convergence under various loads. The method is quadrature
free, utilising the symbolic integration tools of the Maple kernel of MATLAB. This work is presented
to show the promise of the CVFEM formulation in plate bending problems.
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