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ABSTRACT

A control volume method is presented for predicting the displacement argbrotdi thin transversely
loaded flat plates. The new procedure uses discrete Kirchhoff trigD#l€) elements but introduces a
dual mesh of interconnected control volumes (CVs) centred on the finiteealg FE) vertices. Discrete
equations for the unknown degrees of freedom are subsequenihgaidly enforcing equilibrium on
these CVs; as such this implementation is a quadrature free routine. To albmpadson, a quadrature
free implementation of the DKT element, using the standard finite element precedas developed
using symbolic mathematics. The CV based procedure is validated by patcfoteststate of pure
bending and twist. Convergence tests for various loading types shamesth performance for coarse
meshes over the equivalent FE method.

1 INTRODUCTION

Plate bending elements remain an active research area, with work foapsinghe selection of defor-
mation theory, application of suitable boundary conditions and the avoiddméement shear locking.
Recent developments in finite volume (FV) methods have identified two diffapgroaches, a cell
centred method that is a geometrically versatile formulation with multifaceted cooltohes [1] and
vertex centred methods [2]. Both formulations are presented as loclkéegidr both thick and thin
Mindlin plates. This paper presents a vertex centred FV thin plate formulatisedbupon the discrete
Kirchhoff triangle element [3]. The DKT element is based upon Mindlin plageth but has Kirchhoff
constraints, that is transverse shear is zero, applied at each nadgrgge to an element that converges
to the Kirchhoff thin plate solution. The solution convergence is comparaisighe existing finite el-
ement DKT. Both the FE-DKT and CV-DKT formulations where built upon t#w@e moment curvature
matrix and both where solved without quadrature in order to have the dragiacison of the numerical
procedures. The FV method differs from the FE by introducing a duahmemterconnecting control
volumes over a standard finite element mesh. The element stress resukahieaintegrated around
the control volume faces and equilibrium is imposed on that CV. The resuljaijlium equations



then relate the control volume centre unknown displacements to those abowigly centres, in a
manner equivalent to the relationships between nodal displacementstehiati of the FE method.
A quadrature free implementation is achieved using the symbolic maths toolboAT{AB which is
built upon the Maple kernel. Symbolic integration (SI) of the moment curvahateix is carried out in
both the FE-DKT and CV-DKT codes to obtain the element stiffness matrix.

2 Element Stiffness Matrix

As already stated both the FE and CVFE methods are founded upon the sanemtnooirvature re-
lationships, but the formulations differ with regards to the element stiffnesgxmen the FE-DKT

element the stiffness matrix is derived using the principle of minimum potentiafygnequation (1).
The CV-DKT differs from this because the stiffness matrix is composedset af discrete equilibrium
equations. In the finite element method the stiffness matrix for the DKT element is:

1 1-n
Krem = 24 / / BTD,Bdédn (1)
0 0

whereB [3] is the moment curvature matrik)y, is the constitutive matrix in bending is the element
area and, n are the area coordinates of the traingular element.

To determine the stiffness matrix for the CV-DKT a dual mesh of interconrgectimtrol volumes is
set up, with each control volume centred upon a node of the finite elemeht fies control volume
faces are constructed by connecting a point mid way along the finite elemshtadge to the centre
of area of that corresponding finite element.

The stress resultants per unit length are integrated along each facecointihel volume with respect

to the line coordinate, anti-clockwise around the CV node. This integration gives rise to thesstres
resultants acting on each face. For a fatieese arél™ , M’ andM;, representing the total transverse
force and total moments about thendy axes respectively. Equations (2), (3) and (4) are thus functions
to determine the internal actions upon each face of the control volume.

Transverse Force:

T = /Txcosedr—i-/Tysder (2)

Total Moment about the x-axis:

M. = [ Mysinfdr + [ MyycosOdr — [ (yr — y;) (Twcosfdr + T, sinfdr) (3)

Total Moment about the y-axis:
M; = [ MycosOdr + [ Myysinfdr — [ (x, — x;) (TycosOdr + T,sinfdr) 4)

where(z,, y,) are the coordinates of the moment arm along the differential (iney; ) are the coordi-
nates of the centre of the control volunié,, are the bending moment resultaris,are the shear stress
resultants ané denoted the inclination of the control volume fadé¢,, and7,, are determined from the
product of the moment curvaturB, and constitutiveD},, matices

Equilibrium is imposed on the control volume by summing all the internal actiongcm face for the
control volume. The equilibrium equations can be expressed as:



n n n

> Ti4+TE =0 > ML +ME =0 > M+ M =0 (5)
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whereTZ, ME andM{f are any externally applied forces or moments on the control volumezand

is the number of faces for a given control volume. This is carried oue&mh element in the mesh

and assembled into the global stiffness matrix in a manner analogous to thardtéinde element
procedure [4].

E
K. Ko, Ko, w —TE
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Kovw Kompw, Kmow. wy, =14 —ME (6)
E
Koyw Kmyw, Kmyo. —w, ~M

Now the structural equations are in a form equivalent to the finite elemecégure (7),

[K[{U} = {P} (7)

where {U} is the vector of nodal displacementd}is the vector of externally applied force and
moments andK] is the stiffness matrix (6). The load vector can now be modified to include applie
loads and the appropriate boundary constraints applied to the stiffness asain the finite element
method. The stiffness matrix can then be solved by either a direct or itesativion strategy. In the
presented work the MATLAB matrix left division routine was used.

3 Implementation

In the formulation of the FE-DKT (1) and CV-DKT (6) stiffness matriceanswlic integration, using
the Maple kernel of MATLAB, was employed. The advantage of using sjicdis that an explicit

solution to the stiffness matrix is achieved. The symbolic toolbox is capable gfatieg the moment
curvature matrix in a relatively quick time, with the solution extractable to forrveational code. This
was validated by comparing the solution to the FE-DKT element stiffness mattinsighe explicit

FORTRAN code of Jeychandrabose et. al. [5]. Both methods gave aticalesolution. Results from
the quadrature free FE-DKT and CV-DKT elements were compared aghmshell63 element of
ANSYS, a quadratic element composed of 4 DKT elements [6] where 3 poadrgture is employed
in evaluating the stiffness matrix.

4 Results

The CV-DKT has a proper rank to its stiffness matrix and passes the patdbrtetates of pure bending
and twist. Convergence tests of maximum displacement against increasingtidation, for various
loading types and boundary conditions where used to asses the paeréerofathe CV-DKT element
against the FE-DKT, quadrature free DKT, and the quadrature FS8Y S-DKT. Shown here are the
normalised central displacements for square plates of thicknessD.05 with clamped boundaries,
loaded with a uniform pressure load WfN/m? (Figure 1(a)) and a centrally applied point load!&f
(Figure 1(b)). For the uniform pressure load case it can be seendhagrgence to the exact solution
is more rapid than in the FE equivalents. For the point load case it is notethéh&V-DKT method
predicts the central displacement as accurately as the quadraturé=ffeentulation at a given mesh
refinement.
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Figure 1: Convergence of maximum transverse displacement to thin platy.tf@oClamped plate
with uniform pressure load,/b = 1 andh = 0.05. (b) Clamped plate with centrally applied point load,
a/b=1andh = 0.05.

5 Conclusion

A control volume based finite element method is presented for the predictlmending deformations
in thin plates. The method is a direct equivalent to the existing discrete Kiffdhlhagular element and
displays equivalent or better displacement convergence under sdomds. The method is quadrature
free, utilising the symbolic integration tools of the Maple kernel of MATLAB idtvork is presented
to show the promise of the CVFEM formulation in plate bending problems.
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