588 research outputs found
Pupil stabilization for SPHERE's extreme AO and high performance coronagraph system
We propose a new concept of pupil motion sensor for astronomical adaptive
optics systems and present experimental results obtained during the first
laboratory validation of this concept. Pupil motion is an important issue in
the case of extreme adaptive optics, high contrast systems, such as the
proposed Planet Finder instruments for the ESO and Gemini 8-meter telescopes.
Such high contrast imaging instruments will definitively require pupil
stabilization to minimize the effect of quasi-static aberrations. The concept
for pupil stabilization we propose uses the flux information from the AO system
wave-front sensor to drive in closed loop a pupil tip-tilt mirror located in a
focal plane. A laboratory experiment validates this concept and demonstrates
its interest for high contrast imaging instrument.Comment: This paper was published in Optics Express and is made available as
an electronic reprint with the permission of OSA. The paper can be found at
http://www.opticsexpress.org/abstract.cfm?id=144687 on the OSA websit
Analysis of ground-based differential imager performance
In the context of extrasolar planet direct detection, we evaluated the
performance of differential imaging with ground-based telescopes. This study
was carried out in the framework of the VLT-Planet Finder project and is
further extended to the case of Extremely Large Telescopes. Our analysis is
providing critical specifications for future instruments mostly in terms of
phase aberrations but also regarding alignments of the instrument optics or
offset pointing on the coronagraph. It is found that Planet Finder projects on
8m class telescopes can be successful at detecting Extrasolar Giant Planets
providing phase aberrations, alignments and pointing are accurately controlled.
The situation is more pessimistic for the detection of terrestrial planets with
Extremely Large Telescopes for which phase aberrations must be lowered at a
very challenging level
Coronagraphic Low Order Wave Front Sensor : post-processing sensitivity enhancer for high performance coronagraphs
Detection and characterization of exoplanets by direct imaging requires a
coronagraph designed to deliver high contrast at small angular separation. To
achieve this, an accurate control of low order aberrations, such as pointing
and focus errors, is essential to optimize coronagraphic rejection and avoid
the possible confusion between exoplanet light and coronagraphic leaks in the
science image. Simulations and laboratory prototyping have shown that a
Coronagraphic Low Order Wave-Front Sensor (CLOWFS), using a single defocused
image of a reflective focal plane ring, can be used to control tip-tilt to an
accuracy of 10^{-3} lambda/D. This paper demonstrates that the data acquired by
CLOWFS can also be used in post-processing to calibrate residual coronagraphic
leaks from the science image. Using both the CLOWFS camera and the science
camera in the system, we quantify the accuracy of the method and its ability to
successfully remove light due to low order errors from the science image. We
also report the implementation and performance of the CLOWFS on the Subaru
Coronagraphic Extreme AO (SCExAO) system and its expected on-sky performance.
In the laboratory, with a level of disturbance similar to what is encountered
in a post Adaptive Optics beam, CLOWFS post-processing has achieved speckle
calibration to 1/300 of the raw speckle level. This is about 40 times better
than could be done with an idealized PSF subtraction that does not rely on
CLOWFS.Comment: 10 pages, 7 figures, accepted for publication in PAS
Direct exoplanet detection and characterization using the ANDROMEDA method: Performance on VLT/NaCo data
Context. The direct detection of exoplanets with high-contrast imaging
requires advanced data processing methods to disentangle potential planetary
signals from bright quasi-static speckles. Among them, angular differential
imaging (ADI) permits potential planetary signals with a known rotation rate to
be separated from instrumental speckles that are either statics or slowly
variable. The method presented in this paper, called ANDROMEDA for ANgular
Differential OptiMal Exoplanet Detection Algorithm is based on a maximum
likelihood approach to ADI and is used to estimate the position and the flux of
any point source present in the field of view. Aims. In order to optimize and
experimentally validate this previously proposed method, we applied ANDROMEDA
to real VLT/NaCo data. In addition to its pure detection capability, we
investigated the possibility of defining simple and efficient criteria for
automatic point source extraction able to support the processing of large
surveys. Methods. To assess the performance of the method, we applied ANDROMEDA
on VLT/NaCo data of TYC-8979-1683-1 which is surrounded by numerous bright
stars and on which we added synthetic planets of known position and flux in the
field. In order to accommodate the real data properties, it was necessary to
develop additional pre-processing and post-processing steps to the initially
proposed algorithm. We then investigated its skill in the challenging case of a
well-known target, Pictoris, whose companion is close to the detection
limit and we compared our results to those obtained by another method based on
principal component analysis (PCA). Results. Application on VLT/NaCo data
demonstrates the ability of ANDROMEDA to automatically detect and characterize
point sources present in the image field. We end up with a robust method
bringing consistent results with a sensitivity similar to the recently
published algorithms, with only two parameters to be fine tuned. Moreover, the
companion flux estimates are not biased by the algorithm parameters and do not
require a posteriori corrections. Conclusions. ANDROMEDA is an attractive
alternative to current standard image processing methods that can be readily
applied to on-sky data
No planet for HD 166435
The G0V star HD166435 has been observed by the fiber-fed spectrograph ELODIE
as one of the targets in the large extra-solar planet survey that we are
conducting at the Observatory of Haute-Provence. We detected coherent,
low-amplitude, radial-velocity variations with a period of 3.7987days,
suggesting a possible close-in planetary companion. Subsequently, we initiated
a series of high-precision photometric observations to search for possible
planetary transits and an additional series of CaII H and K observations to
measure the level of surface magnetic activity and to look for possible
rotational modulation. Surprisingly, we found the star to be photometrically
variable and magnetically active. A detailed study of the phase stability of
the radial-velocity signal revealed that the radial-velocity variability
remains coherent only for durations of about 30days. Analysis of the time
variation of the spectroscopic line profiles using line bisectors revealed a
correlation between radial velocity and line-bisector orientation. All of these
observations, along with a one-quarter cycle phase shift between the
photometric and the radial-velocity variationss, are well explained by the
presence of dark photospheric spots on HD166435. We conclude that the
radial-velocity variations are not due to gravitational interaction with an
orbiting planet but, instead, originate from line-profile changes stemming from
star spots on the surface of the star. The quasi-coherence of the
radial-velocity signal over more than two years, which allowed a fair fit with
a binary model, makes the stability of this star unusual among other active
stars. It suggests a stable magnetic field orientation where spots are always
generated at about the same location on the surface of the star.Comment: 9 pages, 8 figures, Accepted for publication in A&
The Vector Vortex Coronagraph: Laboratory Results and First Light at Palomar Observatory
High-contrast coronagraphy will be needed to image and characterize faint
extra-solar planetary systems. Coronagraphy is a rapidly evolving field, and
many enhanced alternatives to the classical Lyot coronagraph have been proposed
in the past ten years. Here, we discuss the operation of the vector vortex
coronagraph, which is one of the most efficient possible coronagraphs. We first
present recent laboratory results, and then first light observations at the
Palomar observatory. Our near-infrared H-band (centered at ~ 1.65 microns) and
K-band (centered at ~ 2.2 microns) vector vortex devices demonstrated excellent
contrast results in the lab, down to ~ 1e-6 at an angular separation of 3 lb/d.
On sky, we detected a brown dwarf companion 3000 times fainter than its host
star (HR 7672) in the Ks band (centered at ~2.15 microns), at an angular
separation of ~ 2.5 lb/d. Current and next-generation high-contrast instruments
can directly benefit from the demonstrated capabilities of such a vector
vortex: simplicity, small inner working angle, high optical throughput (>90%),
and maximal off-axis discovery space
Detection of faint companions through stochastic speckle discrimination
We propose a new post-processing technique for the detection of faint
companions from a sequence of adaptive optics corrected short exposures. The
algorithm exploits the difference in shape between the on-axis and off-axis
irradiance distributions and it does not require the signal to be above the
noise level. We show that the method is particularly useful in dealing with
static speckles. Its application to real and simulated data gives excellent
results in the low-signal regime where it outperforms the standard approach of
computing signal-to-noise ratio on one long exposure. We also show that
accurate noise estimation in adaptive optics images of close companions is
rendered impossible due to the presence of static speckles. This new method
provides means of reliable estimation of the confidence intervals for the
detection hypothesis.Comment: accepted for publication in Ap
- …