588 research outputs found

    Pupil stabilization for SPHERE's extreme AO and high performance coronagraph system

    Full text link
    We propose a new concept of pupil motion sensor for astronomical adaptive optics systems and present experimental results obtained during the first laboratory validation of this concept. Pupil motion is an important issue in the case of extreme adaptive optics, high contrast systems, such as the proposed Planet Finder instruments for the ESO and Gemini 8-meter telescopes. Such high contrast imaging instruments will definitively require pupil stabilization to minimize the effect of quasi-static aberrations. The concept for pupil stabilization we propose uses the flux information from the AO system wave-front sensor to drive in closed loop a pupil tip-tilt mirror located in a focal plane. A laboratory experiment validates this concept and demonstrates its interest for high contrast imaging instrument.Comment: This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at http://www.opticsexpress.org/abstract.cfm?id=144687 on the OSA websit

    Analysis of ground-based differential imager performance

    Full text link
    In the context of extrasolar planet direct detection, we evaluated the performance of differential imaging with ground-based telescopes. This study was carried out in the framework of the VLT-Planet Finder project and is further extended to the case of Extremely Large Telescopes. Our analysis is providing critical specifications for future instruments mostly in terms of phase aberrations but also regarding alignments of the instrument optics or offset pointing on the coronagraph. It is found that Planet Finder projects on 8m class telescopes can be successful at detecting Extrasolar Giant Planets providing phase aberrations, alignments and pointing are accurately controlled. The situation is more pessimistic for the detection of terrestrial planets with Extremely Large Telescopes for which phase aberrations must be lowered at a very challenging level

    Coronagraphic Low Order Wave Front Sensor : post-processing sensitivity enhancer for high performance coronagraphs

    Full text link
    Detection and characterization of exoplanets by direct imaging requires a coronagraph designed to deliver high contrast at small angular separation. To achieve this, an accurate control of low order aberrations, such as pointing and focus errors, is essential to optimize coronagraphic rejection and avoid the possible confusion between exoplanet light and coronagraphic leaks in the science image. Simulations and laboratory prototyping have shown that a Coronagraphic Low Order Wave-Front Sensor (CLOWFS), using a single defocused image of a reflective focal plane ring, can be used to control tip-tilt to an accuracy of 10^{-3} lambda/D. This paper demonstrates that the data acquired by CLOWFS can also be used in post-processing to calibrate residual coronagraphic leaks from the science image. Using both the CLOWFS camera and the science camera in the system, we quantify the accuracy of the method and its ability to successfully remove light due to low order errors from the science image. We also report the implementation and performance of the CLOWFS on the Subaru Coronagraphic Extreme AO (SCExAO) system and its expected on-sky performance. In the laboratory, with a level of disturbance similar to what is encountered in a post Adaptive Optics beam, CLOWFS post-processing has achieved speckle calibration to 1/300 of the raw speckle level. This is about 40 times better than could be done with an idealized PSF subtraction that does not rely on CLOWFS.Comment: 10 pages, 7 figures, accepted for publication in PAS

    Direct exoplanet detection and characterization using the ANDROMEDA method: Performance on VLT/NaCo data

    Full text link
    Context. The direct detection of exoplanets with high-contrast imaging requires advanced data processing methods to disentangle potential planetary signals from bright quasi-static speckles. Among them, angular differential imaging (ADI) permits potential planetary signals with a known rotation rate to be separated from instrumental speckles that are either statics or slowly variable. The method presented in this paper, called ANDROMEDA for ANgular Differential OptiMal Exoplanet Detection Algorithm is based on a maximum likelihood approach to ADI and is used to estimate the position and the flux of any point source present in the field of view. Aims. In order to optimize and experimentally validate this previously proposed method, we applied ANDROMEDA to real VLT/NaCo data. In addition to its pure detection capability, we investigated the possibility of defining simple and efficient criteria for automatic point source extraction able to support the processing of large surveys. Methods. To assess the performance of the method, we applied ANDROMEDA on VLT/NaCo data of TYC-8979-1683-1 which is surrounded by numerous bright stars and on which we added synthetic planets of known position and flux in the field. In order to accommodate the real data properties, it was necessary to develop additional pre-processing and post-processing steps to the initially proposed algorithm. We then investigated its skill in the challenging case of a well-known target, β\beta Pictoris, whose companion is close to the detection limit and we compared our results to those obtained by another method based on principal component analysis (PCA). Results. Application on VLT/NaCo data demonstrates the ability of ANDROMEDA to automatically detect and characterize point sources present in the image field. We end up with a robust method bringing consistent results with a sensitivity similar to the recently published algorithms, with only two parameters to be fine tuned. Moreover, the companion flux estimates are not biased by the algorithm parameters and do not require a posteriori corrections. Conclusions. ANDROMEDA is an attractive alternative to current standard image processing methods that can be readily applied to on-sky data

    No planet for HD 166435

    Get PDF
    The G0V star HD166435 has been observed by the fiber-fed spectrograph ELODIE as one of the targets in the large extra-solar planet survey that we are conducting at the Observatory of Haute-Provence. We detected coherent, low-amplitude, radial-velocity variations with a period of 3.7987days, suggesting a possible close-in planetary companion. Subsequently, we initiated a series of high-precision photometric observations to search for possible planetary transits and an additional series of CaII H and K observations to measure the level of surface magnetic activity and to look for possible rotational modulation. Surprisingly, we found the star to be photometrically variable and magnetically active. A detailed study of the phase stability of the radial-velocity signal revealed that the radial-velocity variability remains coherent only for durations of about 30days. Analysis of the time variation of the spectroscopic line profiles using line bisectors revealed a correlation between radial velocity and line-bisector orientation. All of these observations, along with a one-quarter cycle phase shift between the photometric and the radial-velocity variationss, are well explained by the presence of dark photospheric spots on HD166435. We conclude that the radial-velocity variations are not due to gravitational interaction with an orbiting planet but, instead, originate from line-profile changes stemming from star spots on the surface of the star. The quasi-coherence of the radial-velocity signal over more than two years, which allowed a fair fit with a binary model, makes the stability of this star unusual among other active stars. It suggests a stable magnetic field orientation where spots are always generated at about the same location on the surface of the star.Comment: 9 pages, 8 figures, Accepted for publication in A&

    The Vector Vortex Coronagraph: Laboratory Results and First Light at Palomar Observatory

    Get PDF
    High-contrast coronagraphy will be needed to image and characterize faint extra-solar planetary systems. Coronagraphy is a rapidly evolving field, and many enhanced alternatives to the classical Lyot coronagraph have been proposed in the past ten years. Here, we discuss the operation of the vector vortex coronagraph, which is one of the most efficient possible coronagraphs. We first present recent laboratory results, and then first light observations at the Palomar observatory. Our near-infrared H-band (centered at ~ 1.65 microns) and K-band (centered at ~ 2.2 microns) vector vortex devices demonstrated excellent contrast results in the lab, down to ~ 1e-6 at an angular separation of 3 lb/d. On sky, we detected a brown dwarf companion 3000 times fainter than its host star (HR 7672) in the Ks band (centered at ~2.15 microns), at an angular separation of ~ 2.5 lb/d. Current and next-generation high-contrast instruments can directly benefit from the demonstrated capabilities of such a vector vortex: simplicity, small inner working angle, high optical throughput (>90%), and maximal off-axis discovery space

    Detection of faint companions through stochastic speckle discrimination

    Full text link
    We propose a new post-processing technique for the detection of faint companions from a sequence of adaptive optics corrected short exposures. The algorithm exploits the difference in shape between the on-axis and off-axis irradiance distributions and it does not require the signal to be above the noise level. We show that the method is particularly useful in dealing with static speckles. Its application to real and simulated data gives excellent results in the low-signal regime where it outperforms the standard approach of computing signal-to-noise ratio on one long exposure. We also show that accurate noise estimation in adaptive optics images of close companions is rendered impossible due to the presence of static speckles. This new method provides means of reliable estimation of the confidence intervals for the detection hypothesis.Comment: accepted for publication in Ap
    corecore