10 research outputs found

    Serum microRNA profiles in athyroid patients on and off levothyroxine therapy

    Get PDF
    BackgroundLevothyroxine replacement treatment in hypothyroidism is unable to restore physiological thyroxine and triiodothyronine concentrations in serum and tissues completely. Normal serum thyroid stimulating hormone (TSH) concentrations reflect only pituitary euthyroidism and, therefore, novel biomarkers representing tissue-specific thyroid state are needed. MicroRNAs (miRNAs), small non-coding regulatory RNAs, exhibit tissue-specific expression patterns and can be detectable in serum. Previous studies have demonstrated differential expression of (precursors of) miRNAs in tissues under the influence of thyroid hormone.ObjectiveTo study if serum miRNA profiles are changed in different thyroid states.Design and methodsWe studied 13 athyroid patients (6 males) during TSH suppressive therapy and after 4 weeks of thyroid hormone withdrawal. A magnetic bead capture system was used to isolate 384 defined miRNAs from serum. Subsequently, the TaqMan Array Card 3.0 platform was used for profiling after individual target amplification.ResultsMean age of the subjects was 44.0 years (range 20-61 years). Median TSH levels were 88.9 mU/I during levothyroxine withdrawal and 0.006 mU/I during LT4 treatment with a median dosage of 2.1 fag/kg. After normalization to allow inter-sample analysis, a paired analysis did not demonstrate a significant difference in expression of any of the 384 miRNAs analyzed on and off LT4 treatment.ConclusionAlthough we previously showed an up-regulation of pri-miRNAs 133b and 206 in hypothyroid state in skeletal muscle, the present study does not supply evidence that thyroid state also affects serum miRNAs in humans

    Serum microRNA profiles in athyroid patients on and off levothyroxine therapy

    Get PDF
    Background Levothyroxine replacement treatment in hypothyroidism is unable to restore physiological thyroxine and triiodothyronine concentrations in serum and tissues completely. Normal serum thyroid stimulating hormone (TSH) concentrations reflect only pituitary euthyroidism and, therefore, novel biomarkers representing tissue-specific thyroid state are needed. MicroRNAs (miRNAs), small non-coding regulatory RNAs, exhibit tissue-specific expression patterns and can be detectable in serum. Previous studies have demonstrated differential expression of (precursors of) miRNAs in tissues under the influence of thyroid hormone. Objective To study if serum miRNA profiles are changed in different thyroid states. Design and methods We studied 13 athyroid patients (6 males) during TSH suppressive therapy and after 4 weeks of thyroid hormone withdrawal. A magnetic bead capture system was used to isolate 384 defined miRNAs from serum. Subsequently, the TaqMan Array Card 3.0 platform was used for profiling after individual target amplification. Results Mean age of the subjects was 44.0 years (range 20–61 years). Median TSH levels were 88.9 mU/l during levothyroxine withdrawal and 0.006 mU/l during LT4 treatment with a median dosage of 2.1 μg/kg. After normalization to allow inter-sample analysis, a paired analysis did not demonstrate a significant difference in expression of any of the 384 miRNAs analyzed on and off LT4 treatment

    Selenium status is positively associated with bone mineral density in healthy aging European men

    Get PDF
    Objective It is still a matter of debate if subtle changes in selenium (Se) status affect thyroid function tests (TFTs) and bone mineral density (BMD). This is particularly relevant for the elderly, whose nutritional status is more vulnerable. Design and Methods We investigated Se status in a cohort of 387 healthy elderly men (median age 77 yrs; inter quartile range 75-80 yrs) in relation to TFTs and BMD. Se status was determined by measuring both plasma selenoprotein P (SePP) and Se. Results The overall Se status in our population was low normal with only 0.5% (2/387) of subjects meeting the criteria for Se deficiency. SePP and Se levels were not associated with thyroid stimulating hormone (TSH), free thyroxine (FT4), thyroxine (T4), triiodothyronine (T3) or reverse triiodothyronine (rT3) levels. The T3/T4 and T3/rT3 ratios, reflecting peripheral metabolism of thyroid hormone, were not associated with Se status either. SePP and Se were positively associated with total BMD and femoral trochanter BMD. Se, but not SePP, was positively associated with femoral neck and ward's BMD. Multivariate linear analyses showed that these associations remain statistically significant in a model including TSH, FT4, body mass index, physical performance score, age, smoking, diabetes mellitus and number of medication use. Conclusion Our study demonstrates that Se status, within the normal European marginally supplied range, is positively associated with BMD in healthy aging men, independent of thyroid function. Thyroid function tests appear unaffected by Se status in this population

    Sorafenib-Induced Changes in Thyroid Hormone Levels in Patients Treated for Hepatocellular Carcinoma

    No full text
    Context: The pathogenesis of tyrosine kinase inhibitor-induced thyroid hormone (TH) alterations are still a matter of debate. Objective: The objective of this study was to determine the effects of sorafenib on TH levels in patients with hepatocellular carcinoma (HCC) and to evaluate possible mechanisms. Design: We performed a prospective cohort study between 2009 and 2016. Setting: This study was conducted at a tertiary referral center. Patients: This study included 57 consecutive patients with HCC who were treated with sorafenib. Main Outcome Measure: Thyroid-stimulating hormone (TSH) and free thyroxine (FT4) levels were measured every 6 weeks, and extensive thyroid function tests (TFTs) were measured before treatment (t0), after 6 weeks (t6), and at the end of therapy. The effect of sorafenib on TH transport by monocarboxylate transporter (MCT)8 or MCT10 was tested in transfected COS1 cells. Results: Four patients (7%) developed thyroiditis. Among the other patients, 30% had elevation of TSH or FT4 above the normal range. Overall, between t0 and t6, mean TSH increased from 1.28 to 1.57 mU/L (P<0.001) and mean FT4 from 18.4 to 21.2 pmol/L (P<0.001). Simultaneously, the serum triiodothyronine (T3)/reverse triiodothyronine ratio and the (T3/thyroxine) ×100 ratio decreased. Sorafenib decreased cellular T3 uptake by MCT8 and to a lesser extent by MCT10. Conclusions: These in vivo data suggest that sorafenib affects TFTs on multiple levels. Our in vitro experiments suggest a possible role of sorafenib-induced inhibition of T3 transport into the cell by MCT8 and MCT10
    corecore