175 research outputs found

    In vitro studies of the regulation of rabbit phosphoprotein phosphatase

    Get PDF

    Ultraviolet Radiation, Aging and the Skin: Prevention of Damage by Topical cAMP Manipulation

    Get PDF
    Being the largest and most visible organ of the body and heavily influenced by environmental factors, skin is ideal to study the long-term effects of aging. Throughout our lifetime, we accumulate damage generated by UV radiation. UV causes inflammation, immune changes, physical changes, impaired wound healing and DNA damage that promotes cellular senescence and carcinogenesis. Melanoma is the deadliest form of skin cancer and among the malignancies of highest increasing incidence over the last several decades. Melanoma incidence is directly related to age, with highest rates in individuals over the age of 55 years, making it a clear age-related disease. In this review, we will focus on UV-induced carcinogenesis and photo aging along with natural protective mechanisms that reduce amount of realized solar radiation dose and UV-induced injury. We will focus on the theoretical use of forskolin, a plant-derived pharmacologically active compound to protect the skin against UV injury and prevent aging symptoms by up-regulating melanin production. We will discuss its use as a topically-applied root-derived formulation of the Plectranthus barbatus (Coleus forskolii) plant that grows naturally in Asia and that has long been used in various Aryuvedic teas and therapeutic preparations

    Prognostic and predictive value of circulating tumor cells and CXCR4 expression as biomarkers for a CXCR4 peptide antagonist in combination with carboplatin-etoposide in small cell lung cancer: exploratory analysis of a phase II study.

    Get PDF
    Background Circulating tumor cells (CTCs) and chemokine (C-X-C motif) receptor 4 (CXCR4) expression in CTCs and tumor tissue were evaluated as prognostic or predictive markers of CXCR4 peptide antagonist LY2510924 plus carboplatin-etoposide (CE) versus CE in extensive-stage disease small cell lung cancer (ED-SCLC). Methods This exploratory analysis of a phase II study evaluated CXCR4 expression in baseline tumor tissue and peripheral blood CTCs and in post-treatment CTCs. Optimum cutoff values were determined for CTC counts and CXCR4 expression in tumors and CTCs as predictors of survival outcome. Kaplan-Meier estimates and hazard ratios were used to determine biomarker prognostic and predictive values. Results There was weak positive correlation at baseline between CXCR4 expression in tumor tissue and CTCs. Optimum cutoff values were H-score ≥ 210 for CXCR4+ tumor, ≥7% CTCs with CXCR4 expression (CXCR4+ CTCs), and ≥6 CTCs/7.5 mL blood. Baseline H-score for CXCR4+ tumor was not prognostic of progression-free survival (PFS) or overall survival (OS). Baseline CXCR4+ CTCs ≥7% was prognostic of shorter PFS. CTCs ≥6 at baseline and cycle 2, day 1 were prognostic of shorter PFS and OS. None of the biomarkers at their respective optimum cutoffs was predictive of treatment response of LY2510924 plus CE versus CE. Conclusions In patients with ED-SCLC, baseline CXCR4 expression in tumor tissue was not prognostic of survival or predictive of LY2510924 treatment response. Baseline CXCR4+ CTCs ≥7% was prognostic of shorter PFS. CTC count ≥6 at baseline and after 1 cycle of treatment were prognostic of shorter PFS and OS

    Universal changes in biomarkers of coagulation and inflammation occur in patients with severe sepsis, regardless of causative micro-organism [ISRCTN74215569]

    Get PDF
    INTRODUCTION: PROWESS (Recombinant Human Activated Protein C Worldwide Evaluation in Severe Sepsis) was a phase III, randomized, double blind, placebo controlled, multicenter trial conducted in patients with severe sepsis from 164 medical centers. Here we report data collected at study entry for 1690 patients and over the following 7 days for the 840 patients who received placebo (in addition to usual standard of care). METHODS: Nineteen biomarkers of coagulation activation, anticoagulation, fibrinolysis, endothelial injury, and inflammation were analyzed to determine the relationships between baseline values and their change over time, with 28-day survival, and type of infecting causative micro-organism. RESULTS: Levels of 13 of the 19 biomarkers at baseline correlated with Acute Physiology and Chronic Health Evaluation II scores, and nearly all patients exhibited coagulopathy, endothelial injury, and inflammation at baseline. At study entry, elevated D-dimer, thrombin–antithrombin complexes, IL-6, and prolonged prothrombin time were present in 99.7%, 95.5%, 98.5%, and 93.4% of patients, respectively. Markers of endothelial injury (soluble thrombomodulin) and deficient protein C, protein S, and antithrombin were apparent in 72%, 87.6%, 77.8%, and 81.7%, respectively. Impaired fibrinolysis (elevated plasminogen activator inhibitor-1) was observed in 44% of patients. During the first 7 days, increased prothrombin time (which is readily measurable in most clinical settings) was highly evident among patients who were not alive at 28 days. CONCLUSION: Abnormalities in biomarkers of inflammation and coagulation were related to disease severity and mortality outcome in patients with severe sepsis. Coagulopathy and inflammation were universal host responses to infection in patients with severe sepsis, which were similar across causative micro-organism groups

    Drotrecogin alfa (activated) in patients with severe sepsis presenting with purpura fulminans, meningitis, or meningococcal disease: a retrospective analysis of patients enrolled in recent clinical studies

    Get PDF
    INTRODUCTION: We report data from adult and pediatric patients with severe sepsis from studies evaluating drotrecogin alfa (activated) (DrotAA) and presenting with purpura fulminans (PF), meningitis (MEN), or meningococcal disease (MD) (PF/MEN/MD). Such conditions may be associated with an increased bleeding risk but occur in a relatively small proportion of patients presenting with severe sepsis; pooling data across clinical trials provides an opportunity for improving the characterization of outcomes. METHODS: A retrospective analysis of placebo-controlled, open-label, and compassionate-use trials was conducted. Adult patients received infusions of either DrotAA or placebo. All pediatric patients (<18 years old) received DrotAA. 189 adult and 121 pediatric patients presented with PF/MEN/MD. RESULTS: Fewer adult patients with PF/MEN/MD met cardiovascular (68.3% versus 78.8%) or respiratory (57.8% versus 80.5%) organ dysfunction entry criteria than those without. DrotAA-treated adult patients with PF/MEN/MD (n = 163) had an observed 28-day mortality rate of 19.0%, a 28-day serious bleeding event (SBE) rate of 6.1%, and an intracranial hemorrhage (ICH) rate of 4.3%. Six of the seven ICHs occurred in patients with MEN (three of whom were more than 65 years old with a history of hypertension). DrotAA-treated adult patients without PF/MEN/MD (n = 3,088) had an observed 28-day mortality rate of 25.5%, a 28-day SBE rate of 5.8%, and an ICH rate of 1.0%. In contrast, a greater number of pediatric patients with PF/MEN/MD met the cardiovascular organ dysfunction entry criterion (93.5% versus 82.5%) than those without. DrotAA-treated PF/MEN/MD pediatric patients (n = 119) had a 14-day mortality rate of 10.1%, an SBE rate of 5.9%, and an ICH rate of 2.5%. DrotAA-treated pediatric patients without PF/MEN/MD (n = 142) had a 14-day mortality rate of 14.1%, an SBE rate of 9.2%, and an ICH rate of 3.5%. CONCLUSION: DrotAA-treated adult patients with severe sepsis presenting with PF/MEN/MD had a similar SBE rate, a lower observed 28-day mortality rate, and a higher observed rate of ICH than DrotAA-treated patients without PF/MEN/MD. DrotAA-treated pediatric patients with severe sepsis with PF/MEN/MD may differ from adults, because all three outcome rates (SBE, mortality, and ICH) were lower in pediatric patients with PF/MEN/MD

    Whole Genome Distribution and Ethnic Differentiation of Copy Number Variation in Caucasian and Asian Populations

    Get PDF
    Although copy number variation (CNV) has recently received much attention as a form of structure variation within the human genome, knowledge is still inadequate on fundamental CNV characteristics such as occurrence rate, genomic distribution and ethnic differentiation. In the present study, we used the Affymetrix GeneChip® Mapping 500K Array to discover and characterize CNVs in the human genome and to study ethnic differences of CNVs between Caucasians and Asians. Three thousand and nineteen CNVs, including 2381 CNVs in autosomes and 638 CNVs in X chromosome, from 985 Caucasian and 692 Asian individuals were identified, with a mean length of 296 kb. Among these CNVs, 190 had frequencies greater than 1% in at least one ethnic group, and 109 showed significant ethnic differences in frequencies (p<0.01). After merging overlapping CNVs, 1135 copy number variation regions (CNVRs), covering approximately 439 Mb (14.3%) of the human genome, were obtained. Our findings of ethnic differentiation of CNVs, along with the newly constructed CNV genomic map, extend our knowledge on the structural variation in the human genome and may furnish a basis for understanding the genomic differentiation of complex traits across ethnic groups

    Involvement of p300 in constitutive and HIV-1 Tat-activated expression of glial fibrillary acidic protein in astrocytes

    Get PDF
    HIV-1 Tat protein is an important pathogenic factor in HIV-1-associated neurological diseases. One hallmark of HIV-1 infection of the central nervous system (CNS) is astrocytosis, which is characterized by elevated GFAP expression in astrocytes. We have shown that Tat activates GFAP expression in astrocytes (Zhou, et al., Mol. Cell. Neurosci. 27:296, 2004) and that GFAP is an important regulator of Tat neurotoxicity (Zou, et. al., Am. J. Pathol. 171:1293, 2007). However, the underlying mechanisms for Tat-mediated GFAP up-regulation are not understood. In the current study, we reported concurrent up-regulation of adenovirus E1a-associated 300 kDa protein p300 and GFAP in Tat-expressing human astroytoma cells and primary astrocytes. We showed that p300 was indeed induced by Tat expression and HIV-1 infection and that the induction occurred at the transcriptional level through the cis-acting elements of early growth response 1 (Egr-1) within its promoter. Using siRNA, we further showed that p300 regulated both constitutive and Tat-mediated GFAP expression. Moreover, we showed that ectopic expression of p300 potentiated Tat transactivation activity and increased proliferation of HIV-1-infected astrocytes, but had little effect on HIV-1 replication in these cells. Taken together, these results demonstrate for the first time that Tat is a positive regulator of p300 expression, which in turn regulates GFAP expression, and suggest that the Tat-Egr-1-p300-GFAP axis likely contributes to Tat neurotoxicity and predisposes astrocytes to be an HIV-1 sanctuary in the CNS

    Genome-Wide Association Analyses Identify SPOCK as a Key Novel Gene Underlying Age at Menarche

    Get PDF
    For females, menarche is a most significant physiological event. Age at menarche (AAM) is a trait with high genetic determination and is associated with major complex diseases in women. However, specific genes for AAM variation are largely unknown. To identify genetic factors underlying AAM variation, a genome-wide association study (GWAS) examining about 380,000 SNPs was conducted in 477 Caucasian women. A follow-up replication study was performed to validate our major GWAS findings using two independent Caucasian cohorts with 854 siblings and 762 unrelated subjects, respectively, and one Chinese cohort of 1,387 unrelated subjects—all females. Our GWAS identified a novel gene, SPOCK (Sparc/Osteonectin, CWCV, and Kazal-like domains proteoglycan), which had seven SNPs associated with AAM with genome-wide false discovery rate (FDR) q<0.05. Six most significant SNPs of the gene were selected for validation in three independent replication cohorts. All of the six SNPs were replicated in at least one cohort. In particular, SNPs rs13357391 and rs1859345 were replicated both within and across different ethnic groups in all three cohorts, with p values of 5.09×10−3 and 4.37×10−3, respectively, in the Chinese cohort and combined p values (obtained by Fisher's method) of 5.19×10−5 and 1.02×10−4, respectively, in all three replication cohorts. Interestingly, SPOCK can inhibit activation of MMP-2 (matrix metalloproteinase-2), a key factor promoting endometrial menstrual breakdown and onset of menstrual bleeding. Our findings, together with the functional relevance, strongly supported that the SPOCK gene underlies variation of AAM

    Constitutive Vagus Nerve Activation Modulates Immune Suppression in Sepsis Survivors

    Get PDF
    Patients surviving a septic episode exhibit persistent immune impairment and increased mortality due to enhanced vulnerability to infections. In the present study, using the cecal ligation and puncture (CLP) model of polymicrobial sepsis, we addressed the hypothesis that altered vagus nerve activity contributes to immune impairment in sepsis survivors. CLP-surviving mice exhibited less TNFα in serum following administration of LPS, a surrogate for an infectious challenge, than control-operated (control) mice. To evaluate the role of the vagus nerve in the diminished response to LPS, mice were subjected to bilateral subdiaphragmatic vagotomy at 2 weeks post-CLP. CLP-surviving vagotomized mice exhibited increased serum and tissue TNFα levels in response to LPS-challenge compared to CLP-surviving, non-vagotomized mice. Moreover, vagus nerve stimulation in control mice diminished the LPS-induced TNFα responses while having no effect in CLP mice, suggesting constitutive activation of vagus nerve signaling in CLP-survivors. The percentage of splenic CD4+ ChAT-EGFP+ T cells that relay vagus signals to macrophages was increased in CLP-survivors compared to control mice, and vagotomy in CLP-survivors resulted in a reduced percentage of ChAT-EGFP+ cells. Moreover, CD4 knockout CLP-surviving mice exhibited an enhanced LPS-induced TNFα response compared to wild-type mice, supporting a functional role for CD4+ ChAT+ T cells in mediating inhibition of LPS-induced TNFα responses in CLP-survivors. Blockade of the cholinergic anti-inflammatory pathway with methyllcaconitine, an α7 nicotinic acetylcholine receptor antagonist, restored LPS-induced TNFα responses in CLP-survivors. Our study demonstrates that the vagus nerve is constitutively active in CLP-survivors and contributes to the immune impairment
    corecore