8 research outputs found

    Molecular Cloning and Characterization of the Human Diacylglycerol Kinase β (DGKβ) Gene ALTERNATIVE SPLICING GENERATES DGKβ ISOTYPES WITH DIFFERENT PROPERTIES

    Get PDF
    Diacylglycerol kinases are key modulators of levels of diacylglycerol, a second messenger involved in a variety of cellular responses to extracellular stimuli. A number of diacylglycerol kinases encoded by separate genes are present in mammalian genomes. We have cloned cDNAs encoding several isoforms of the human homologue of the rat diacylglycerol kinase β gene and characterized two such isoforms that differ at their carboxyl terminus through alternative splicing and the usage of different polyadenylation signals. Quantitative analysis of gene expression in a panel of human tissue cDNAs revealed that transcripts corresponding to both isoforms are co-expressed in central nervous system tissues and in the uterus, with one variant being expressed at relatively higher levels. As green fluorescent protein fusions, the two isoforms displayed localization to different subcellular compartments, with one variant being associated with the plasma membrane, while the other isoform was predominantly localized within the cytoplasm. Differences were also observed in their subcellular localization in response to phorbol ester stimulation. Enzymatic assays demonstrated that the two isoforms display comparable diacylglycerol kinase activities. Therefore, the human diacylglycerol kinase β gene can generate several enzyme isoforms, which can display different expression levels and subcellular localization but similar enzymatic activities in vitro

    The N-Methyl-D-Aspartate Receptor Blocker REL-1017 (Esmethadone) Reduces Calcium Influx Induced by Glutamate, Quinolinic Acid, and Gentamicin

    No full text
    REL-1017 (esmethadone) is a novel N-methyl-D-aspartate receptor (NMDAR) antagonist and promising rapid antidepressant candidate. Using fluorometric imaging plate reader (FLIPR) assays, we studied the effects of quinolinic acid (QA) and gentamicin, with or without L-glutamate and REL-1017, on intracellular calcium ([Ca2+](in)) in recombinant cell lines expressing human GluN1-GluN2A, GluN1-GluN2B, GluN1-GluN2C, and GluN1-GluN2D NMDAR subtypes. There were no effects of QA on [Ca2+](in) in cells expressing GluN1-GluN2C subtypes. QA acted as a low-potency, subtype-selective, NMDAR partial agonist in GluN1-GluN2A, GluN1-GluN2B, and GluN1-GluN2D subtypes. REL-1017 reduced [Ca2+](in) induced by QA. In cells expressing the GluN1-GluN2D subtype, QA acted as an agonist in the presence of 0.04 mu M L-glutamate and as an antagonist in the presence of 0.2 mu M L-glutamate. REL-1017 reduced [Ca2+](in) induced by L-glutamate alone and with QA in all cell lines. In the absence of L-glutamate, gentamicin had no effect. Gentamicin was a positive modulator for GluN1-GluN2B subtypes at 10 mu M L-glutamate, for GluN1-GluN2A at 0.2 mu M L-glutamate, and for GluN1-GluN2A, GluN1-GluN2B, and GluN1-GluN2D at 0.04 mu M L-glutamate. No significant changes were observed with GluN1-GluN2C NMDARs. REL-1017 reduced [Ca2+](in) induced by the addition of L-glutamate in all NMDAR cell lines in the presence or absence of gentamicin. In conclusion, REL-1017 reduced [Ca2+](in) induced by L-glutamate alone and when increased by QA and gentamicin. REL-1017 may protect cells from excessive calcium entry via NMDARs hyperactivated by endogenous and exogenous molecules

    Esmethadone (REL-1017) and Other Uncompetitive NMDAR Channel Blockers May Improve Mood Disorders via Modulation of Synaptic Kinase-Mediated Signaling

    No full text
    This article presents a mechanism of action hypothesis to explain the rapid antidepressant effects of esmethadone (REL-1017) and other uncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonists and presents a corresponding mechanism of disease hypothesis for major depressive disorder (MDD). Esmethadone and other uncompetitive NMDAR antagonists may restore physiological neural plasticity in animal models of depressive-like behavior and in patients with MDD via preferential tonic block of pathologically hyperactive GluN2D subtypes. Tonic Ca2+ currents via GluN2D subtypes regulate the homeostatic availability of synaptic proteins. MDD and depressive behaviors may be determined by reduced homeostatic availability of synaptic proteins, due to upregulated tonic Ca2+ currents through GluN2D subtypes. The preferential activity of low-potency NMDAR antagonists for GluN2D subtypes may explain their rapid antidepressant effects in the absence of dissociative side effects

    Pharmacological Comparative Characterization of REL-1017 (Esmethadone-HCl) and Other NMDAR Channel Blockers in Human Heterodimeric N-Methyl-D-Aspartate Receptors

    No full text
    Excessive Ca2+ currents via N-methyl-D-aspartate receptors (NMDARs) have been implicated in many disorders. Uncompetitive NMDAR channel blockers are an emerging class of drugs in clinical use for major depressive disorder (MDD) and other neuropsychiatric diseases. The pharmacological characterization of uncompetitive NMDAR blockers in clinical use may improve our understanding of NMDAR function in physiology and pathology. REL-1017 (esmethadone-HCl), a novel uncompetitive NMDAR channel blocker in Phase 3 trials for the treatment of MDD, was characterized together with dextromethorphan, memantine, (±)-ketamine, and MK-801 in cell lines over-expressing NMDAR subtypes using fluorometric imaging plate reader (FLIPR), automated patch-clamp, and manual patch-clamp electrophysiology. In the absence of Mg2+, NMDAR subtypes NR1-2D were most sensitive to low, sub-μM glutamate concentrations in FLIPR experiments. FLIPR Ca2+ determination demonstrated low μM affinity of REL-1017 at NMDARs with minimal subtype preference. In automated and manual patch-clamp electrophysiological experiments, REL-1017 exhibited preference for the NR1-2D NMDAR subtype in the presence of 1 mM Mg2+ and 1 μM L-glutamate. Tau off and trapping characteristics were similar for (±)-ketamine and REL-1017. Results of radioligand binding assays in rat cortical neurons correlated with the estimated affinities obtained in FLIPR assays and in automated and manual patch-clamp assays. In silico studies of NMDARs in closed and open conformation indicate that REL-1017 has a higher preference for docking and undocking the open-channel conformation compared to ketamine. In conclusion, the pharmacological characteristics of REL-1017 at NMDARs, including relatively low affinity at the NMDAR, NR1-2D subtype preference in the presence of 1 mM Mg2+, tau off and degree of trapping similar to (±)-ketamine, and preferential docking and undocking of the open NMDAR, could all be important variables for understanding the rapid-onset antidepressant effects of REL-1017 without psychotomimetic side effects

    Esmethadone-HCl (REL-1017): a promising rapid antidepressant

    No full text
    This review article presents select recent studies that form the basis for the development of esmethadone into a potential new drug. Esmethadone is a promising member of the pharmacological class of uncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonists that have shown efficacy for major depressive disorder (MDD) and other diseases and disorders, such as Alzheimer's dementia and pseudobulbar affect. The other drugs in the novel class of NMDAR antagonists with therapeutic uses that are discussed for comparative purposes in this review are esketamine, ketamine, dextromethorphan, and memantine. We present in silico, in vitro, in vivo, and clinical data for esmethadone and other uncompetitive NMDAR antagonists that may advance our understanding of the role of these receptors in neural plasticity in health and disease. The efficacy of NMDAR antagonists as rapid antidepressants may advance our understanding of the neurobiology of MDD and other neuropsychiatric diseases and disorders.ISSN:0940-1334ISSN:1433-849

    A deeply rooted scientific discipline: Origins and development of sociology of law in italy

    No full text
    corecore