586 research outputs found

    EIN2 and COI1 control the antagonism between ethylene and jasmonate in adventitious rooting of Arabidopsis thaliana thin cell layers

    Get PDF
    Auxins induce adventitious roots (ARs) in numerous culture-systems, and indole-3-butyric acid (IBA) is frequently the best AR-inducer. Vitamin requirements vary according to species, explant, and culture-conditions. Arabidopsis thaliana thin cell layers (AtTCLs) are uncapable of AR-formation on hormone-free medium containing thiamine and myo-inositol, whereas ARs are induced when IBA (10 μM), with/without kinetin (Kin, 0.1 μM), is added. The research frst aim was to determine whether a synergism between IBA and myo-inositol and thiamine was necessary for AR-formation. Results showed that IBA induced AR-formation without myo-inositol and thiamine, but better when both vitamins were also present. Deciphering hormonal action on AR formation under optimal vitamin content would be essential for improving the AR process. Ethylene (ET)/jasmonic acid (JA) signaling cross-talk has been demonstrated as being involved in AR-formation in IBA+Kincultured AtTCLs, by using ein3eil1 and coi1-16 mutants. ETHYLENE INSENSITIVE3 (EIN3)/EIN3-LIKE1 (EIL1) are positive regulators of ethylene (ET)-signaling, whereas CORONATINE INSENSITIVE1 (COI1) is involved in JA-signaling. The ETHYLENE INSENSITIVE2 (EIN2) protein activates EIN3/EIL1 in ET-presence. To understand whether EIN2 was also involved, the AR-response of ein2-1 and coi1-16 TCLs was evaluated adding the ET-precursor 1-aminocyclopropane1-carboxylic acid (ACC, 0.1 μM) and/or the JA-donor methyl jasmonate (JAMe, 0.01 μM) to IBA+vitamins-containing medium. AR-formation was enhanced by JAMe, reduced by ACC, but unchanged by JAMe+ACC in the wild type TCLs, whereas remained similarly low in ein2-1 and coi1-16 under all treatments. Collectively, these results demonstrate that the antagonism between JA and ET in AR-formation from AtTCLs involves a cross-talk by EIN2 and COI1

    Design, preparation and characterization of ulvan based thermosensitive hydrogels

    Get PDF
    The present study is focused on the exploitation and conversion of sulphated polysaccharides obtainedfrom waste algal biomass into high value added material for biomedical applications. ulvan, a sulphatedpolysaccharide extracted from green seaweeds belonging to Ulva sp. was selected as a suitable materialdue to its chemical versatility and widely ascertained bioactivity. To date the present work representsthe first successful attempt of preparation of ulvan-based hydrogels displaying thermogelling behaviour.ulvan was provided with thermogelling properties by grafting poly(N-isopropylacrylamide) chains ontoits backbone as thermosensitive component. To this aim ulvan was properly modified with acryloylgroups to act as macroinitiator in the radical polymerization of N-isopropylacrylamide, induced by UVirradiation through a “grafting from” method. The thermogelling properties of the copolymer were inves-tigated by thermal and rheological analyses. Sol–gel transition of the copolymer was found to occur at30–31◦C thus indicating the feasibility of ulvan for being used as in-situ hydrogel forming systems forbiomedical application

    Jasmonate and nitric oxide roles in the control of xylary cell formation and identity in Arabidopsis seedlings

    Get PDF
    In basal hypocotyls of dark-grown Arabidopsis seedlings, xylary cells may form from the pericycle as an alternative to another developmental program, i.e. adventitious roots. It is known that several hormones may induce xylogenesis, as jasmonic acid (JA), indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA), which also affect xylary cell identity. Recent studies with the ethylene (ET)-perception mutant ein3eil1 and the ET-precursor 1-aminocyclopropane-1-carboxylic acid (ACC) have shown ET involvement in IBA induced ectopic metaxylem. Nitric oxide (NO) is a reactive free radical molecule, which acts as a messenger in several cell differentiation events, including programmed cell death, moreover it can be produced after IBA/IAA-treatments influencing JA signalling and interacting positively/negatively with ET. To date, NO involvement in ET/JA-mediated xylogenesis has never been investigated.The aim of the present research was to determine the involvement of JA, ET and NO in the control of endogenous/exogenous auxin-induced xylogenesis through a possible crosstalk mediated by EIN3/EIL1. To this aim, ectopic xylem formation was investigated in the hypocotyl of dark-grown Arabidopsis seedlings exposed to various concentrations of JA methyl-ester (JAMe) with/without ACC, IBA or IAA. The xylogenic response in the wild-type (wt) was compared with that of the ein3eil1 mutant, the NO signal was quantified and the its role evaluated by measuring the effects of treatments with a NO donor/scavenger (SNP/cPTIO). Results show that the ectopic formation of protoxylem was enhanced in the wt by JAMe when applied alone at a specific concentration (i.e. 10μM), whereas in ein3eil1 mutant it occurred with any JAMe concentration (i.e. 0.01, 1 and 10 μM). This stimulation of xylary elements mediated by JAMe suggests that a negative interaction between JA and ET-signalling is involved in this developmental program. The negative interaction was confirmed by the reduction in xylogenesis observed in the wt after the combined application of JAMe with ACC, in comparison with JAMe alone. Nitric oxide was detected at early stages of both xylogenesis and adventitious rooting in the hypocotyl pericycle cells and its production was highly enhanced by JAMe at the highest concentration, combined or not with IBA (10 μM). Histological analyses showed that the xylary identity changed when JAMe was applied with each auxin in comparison with treatments with auxin alone. In addition, the IBA/IAA-induced adventitious rooting was increased by the same JAMe concentration enhancing xylogenesis when applied alone. This suggests a role for JA in modulating both developmental programs (adventitious rooting and xylogenesis) in the same target cells (hypocotyl pericycle cells), through an interaction with NO, as summarized in the model proposed (Fig. 1)

    Synergistic and Interdisciplinary Approaches for the Conservation of Monumental Heritage: Cupola of Santa Maria del Fiore in Florence, Italy

    Get PDF
    This paper presents the results of an interdisciplinary study carried out on Brunelleschi’s Cupola of Santa Maria del Fiore in Florence, Italy, one of the most emblematic masonry domes in the world. The cupola has been affected since the beginning of its construction by a widespread cracking phenomenon, and several studies were done over the centuries to clarify its safety conditions. To have a direct and indirect record of the cracks opening or closing, a complex monitoring system was installed on the monument during the last century. An accurate analysis of crack widths and global displacements, performed considering both historical and recent monitoring data, has allowed for the identification of the movements developed in the monument, evaluating their relationship with environmental and seismic events. In line with the interdisciplinary approach strongly recommended in the field of assessment and conservation of monumental heritage, this paper reconsiders some issues concerning the causes of the actual damage to the cupola. In particular, in light of the obtained results, the famous seventeenth century Viviani’s conclusions about the cupola’s damage, confirmed by Chiarugi in the 1980s, are compared with other hypotheses, such as the differential settlement of pillars (Cecchini in 1698 and Ximenes in 1757) and the influence of temperature variations (Nervi in 1934). The large amount of measured data and the results of the last numerical models of the cupola, combined with recent dynamic measurements, allowed the updating of some previous conclusions on damage causes and trends. Starting from these conclusions, a more reliable forecasting model of the monument can be set up that could be useful in identifying effective conservation strategy for this outstanding monument

    Jasmonates, ethylene and brassinosteroids control adventitious and lateral rooting as stress avoidance responses to heavy metals and metalloids

    Get PDF
    Developmental and environmental signaling networks often converge during plant growth in response to changing conditions. Stress-induced hormones, such as jasmonates (JAs), can influence growth by crosstalk with other signals like brassinosteroids (BRs) and ethylene (ET). Nevertheless, it is unclear how avoidance of an abiotic stress triggers local changes in development as a response. It is known that stress hormones like JAs/ET and BRs can regulate the division rate of cells from the first asymmetric cell divisions (ACDs) in meristems, suggesting that stem cell activation may take part in developmental changes as a stress-avoidance-induced response. The root system is a prime responder to stress conditions in soil. Together with the primary root and lateral roots (LRs), adventitious roots (ARs) are necessary for survival in numerous plant species. AR and LR formation is affected by soil pollution, causing substantial root architecture changes by either depressing or enhancing rooting as a stress avoidance/survival response. Here, a detailed overview of the crosstalk between JAs, ET, BRs, and the stress mediator nitric oxide (NO) in auxin-induced AR and LR formation, with/without cadmium and arsenic, is presented. Interactions essential in achieving a balance between growth and adaptation to Cd and As soil pollution to ensure survival are reviewed here in the model species Arabidopsis and rice

    CLOCK gene polymorphisms and quality of aging in a cohort of nonagenarians – The MUGELLO Study

    Get PDF
    Abstract A total of 356 elderly subjects [257F; 88–106 years] were genotyped for three polymorphisms of the CLOCK gene by TaqMan real-time PCR approach, in order to find associations with quality of aging. Subjects homozygous for the minor allele of rs1801260 were less frequently overweight (p = 0.046), had higher fasting glucose levels (p = 0.037), better scores at the Clock Drawing Test (CDT) (p = 0.047) and worse scores at the Geriatric Depression Scale (p = 0.032). Subjects homozygous for the minor allele of rs11932595 showed higher fasting glucose levels (p = 0.044) and better scores at CDT (p = 0.030). Conversely, subjects homozygous for the minor allele of rs4580704 showed higher triglyceride (p = 0.012), and LDL-cholesterol levels (p = 0.44), and a greater adherence to the Mediterranean diet (MD) (p = 0.044). In addition, AAC, AAG, GGC and AGC (rs1801260–rs11932595–rs4580704) haplotypes were analyzed: AAG was associated with higher risk of overweight (p = 0.008), hypertriglyceridemia (p = 0.040) and hypercholesterolemia (p = 0.036); GGC with lower risk of hyperglycemia (p = 0.022), better sleep pattern (p = 0.001) and with better score at mini-mental state examination (p = 0.010); AGC with lower risk of depression (p = 0.026) and AAC with lower adherence to the MD (p = 0.028). Therefore, CLOCK gene polymorphisms let us hypothesize an involvement in the quality of aging in a cohort of nonagenarians

    Germline mutations in DNA repair genes predispose asbestos-exposed patients to malignant pleural mesothelioma.

    Get PDF
    Malignant pleural mesothelioma (MPM) is a rare, aggressive cancer caused by asbestos exposure. An inherited predisposition has been suggested to explain multiple cases in the same family and the observation that not all individuals highly exposed to asbestos develop the tumor. Germline mutations in BAP1 are responsible for a rare cancer predisposition syndrome that includes predisposition to mesothelioma. We hypothesized that other genes involved in hereditary cancer syndromes could be responsible for the inherited mesothelioma predisposition. We investigated the prevalence of germline variants in 94 cancer-predisposing genes in 93 MPM patients with a quantified asbestos exposure. Ten pathogenic truncating variants (PTVs) were identified in PALB2, BRCA1, FANCI, ATM, SLX4, BRCA2, FANCC, FANCF, PMS1 and XPC. All these genes are involved in DNA repair pathways, mostly in homologous recombination repair. Patients carrying PTVs represented 9.7% of the panel and showed lower asbestos exposure than did all the other patients (p=0.0015). This suggests that they did not efficiently repair the DNA damage induced by asbestos and leading to carcinogenesis. This study shows that germline variants in several genes may increase MPM susceptibility in the presence of asbestos exposure and may be important for specific treatment

    Auxin-jasmonate crosstalk in Oryza sativa L. root system formation after cadmium and/or arsenic exposure

    Get PDF
    Soil pollutants may affect root growth through interactions among phytohormones like auxin and jasmonates. Rice is frequently grown in paddy fields contaminated by cadmium and arsenic, but the effects of these pollutants on jasmonates/auxin crosstalk during adventitious and lateral roots formation are widely unknown. Therefore, seedlings of Oryza sativa cv. Nihonmasari and of the jasmonate-biosynthetic mutant coleoptile photomorphogenesis2 were exposed to cadmium and/or arsenic, and/or jasmonic acid methyl ester, and then analysed through morphological, histochemical, biochemical and molecular approaches. In both genotypes, arsenic and cadmium accumulated in roots more than shoots. In the roots, arsenic levels were more than twice higher than cadmium levels, either when arsenic was applied alone, or combined with cadmium. Pollutants reduced lateral root density in the wild -type in every treatment condition, but jasmonic acid methyl ester increased it when combined with each pollutant. Interestingly, exposure to cadmium and/or arsenic did not change lateral root density in the mutant. The transcript levels of OsASA2 and OsYUCCA2, auxin biosynthetic genes, increased in the wild-type and mutant roots when pollutants and jasmonic acid methyl ester were applied alone. Auxin (indole-3-acetic acid) levels transiently increased in the roots with cadmium and/or arsenic in the wild-type more than in the mutant. Arsenic and cadmium, when applied alone, induced fluctuations in bioactive jasmonate contents in wild-type roots, but not in the mutant. Auxin distribution was evaluated in roots of OsDR5::GUS seedlings exposed or not to jasmonic acid methyl ester added or not with cadmium and/or arsenic. The DR5::GUS signal in lateral roots was reduced by arsenic, cadmium, and jasmonic acid methyl ester. Lipid peroxidation, evaluated as malondialdehyde levels, was higher in the mutant than in the wild-type, and increased particularly in As presence, in both genotypes. Altogether, the results show that an auxin/jasmonate interaction affects rice root system development in the presence of cadmium and/or arsenic, even if exogenous jasmonic acid methyl ester only slightly mitigates pollutants toxicity

    COVID-19 Sequelae and the Host Pro-Inflammatory Response: An Analysis From the OnCovid Registry

    Get PDF
    Background: Fifteen percent of patients with cancer experience symptomatic sequelae, which impair post–COVID-19 outcomes. In this study, we investigated whether a proinflammatory status is associated with the development of COVID-19 sequelae. / Methods: OnCovid recruited 2795 consecutive patients who were diagnosed with Severe Acute Respiratory Syndrome Coronavirus 2 infection between February 27, 2020, and February 14, 2021. This analysis focused on COVID-19 survivors who underwent a clinical reassessment after the exclusion of patients with hematological malignancies. We evaluated the association of inflammatory markers collected at COVID-19 diagnosis with sequelae, considering the impact of previous systemic anticancer therapy. All statistical tests were 2-sided. / Results: Of 1339 eligible patients, 203 experienced at least 1 sequela (15.2%). Median baseline C-reactive protein (CRP; 77.5 mg/L vs 22.2 mg/L, P < .001), lactate dehydrogenase (310 UI/L vs 274 UI/L, P = .03), and the neutrophil to lymphocyte ratio (NLR; 6.0 vs 4.3, P = .001) were statistically significantly higher among patients who experienced sequelae, whereas no association was reported for the platelet to lymphocyte ratio and the OnCovid Inflammatory Score, which includes albumin and lymphocytes. The widest area under the ROC curve (AUC) was reported for baseline CRP (AUC = 0.66, 95% confidence interval [CI]: 0.63 to 0.69), followed by the NLR (AUC = 0.58, 95% CI: 0.55 to 0.61) and lactate dehydrogenase (AUC = 0.57, 95% CI: 0.52 to 0.61). Using a fixed categorical multivariable analysis, high CRP (odds ratio [OR] = 2.56, 95% CI: 1.67 to 3.91) and NLR (OR = 1.45, 95% CI: 1.01 to 2.10) were confirmed to be statistically significantly associated with an increased risk of sequelae. Exposure to chemotherapy was associated with a decreased risk of sequelae (OR = 0.57, 95% CI: 0.36 to 0.91), whereas no associations with immune checkpoint inhibitors, endocrine therapy, and other types of systemic anticancer therapy were found. / Conclusions: Although the association between inflammatory status, recent chemotherapy and sequelae warrants further investigation, our findings suggest that a deranged proinflammatory reaction at COVID-19 diagnosis may predict for sequelae development
    corecore