6,960 research outputs found
Expansion of a finite size plasma in vacuum
The expansion dynamics of a finite size plasma is examined from an analytical
perspective. Results regarding the charge distribution as well as the
electrostatic potential are presented. The acceleration of the ions and the
associated cooling of the electrons that takes place during the plasma
expansion is described. An extensive analysis of the transition between the
semi infinite and the finite size plasma behaviour is carried out. Finally, a
test of the analytical results, performed through numerical simulations, is
presented.Comment: 4 pages with 5 figure
Black strings in (4+1)-dimensional Einstein-Yang-Mills theory
We study two classes of static uniform black string solutions in a
(4+1)-dimensional SU(2) Einstein-Yang-Mills model. These configurations possess
a regular event horizon and corresponds in a 4-dimensional picture to axially
symmetric black hole solutions in an Einstein-Yang-Mills-Higgs-U(1)-dilaton
theory. In this approach, one set of solutions possesses a nonzero magnetic
charge, while the other solutions represent black holes located in between a
monopole-antimonopole pair. A detailed analysis of the solutions' properties is
presented, the domain of existence of the black strings being determined. New
four dimensional solutions are found by boosting the five dimensional
configurations. We also present an argument for the non-existence of finite
mass hyperspherically symmetric black holes in SU(2) Einstein-Yang-Mills
theory.Comment: 19 Revtex pages, 27 eps-figures; discussion on rotating black holes
modifie
Rotating Boson Stars in 5 Dimensions
We study rotating boson stars in five spacetime dimensions. The boson fields
consist of a complex doublet scalar field. Considering boson stars rotating in
two orthogonal planes with both angular momenta of equal magnitude, a special
ansatz for the boson field and the metric allows for solutions with nontrivial
dependence on the radial coordinate only. The charge of the scalar field equals
the sum of the angular momenta. The rotating boson stars are globally regular
and asymptotically flat. For our choice of a sixtic potential the rotating
boson star solutions possess a flat spacetime limit. We study the solutions in
flat and curved spacetime.Comment: 17 pages, 6 figure
Charged State of a Spherical Plasma in Vacuum
The stationary state of a spherically symmetric plasma configuration is
investigated in the limit of immobile ions and weak collisions. Configurations
with small radii are positively charged as a significant fraction of the
electron population evaporates during the equilibration process, leaving behind
an electron distribution function with an energy cutoff. Such charged plasma
configurations are of interest for the study of Coulomb explosions and ion
acceleration from small clusters irradiated by ultraintense laser pulses and
for the investigation of ion bunches propagation in a plasma
Jasmonic acid methyl ester induces xylogenesis and modulates auxin-induced xylary cell identity with NO Involvement
In Arabidopsis basal hypocotyls of dark-grown seedlings, xylary cells may form from the pericycle as an alternative to adventitious roots. Several hormones may induce xylogenesis, as Jasmonic acid (JA), as well as indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) auxins, which also affect xylary identity. Studies with the ethylene (ET)-perception mutant ein3eil1 and the ET-precursor 1-aminocyclopropane-1-carboxylic acid (ACC), also demonstrate ET involvement in IBA-induced ectopic metaxylem. Moreover, nitric oxide (NO), produced after IBA/IAA-treatments, may affect JA signalling and interact positively/negatively with ET. To date, NO-involvement in ET/JA-mediated xylogenesis has never been investigated. To study this, and unravel JA-effects on xylary identity, xylogenesis was investigated in hypocotyls of seedlings treated with JA methyl-ester (JAMe) with/without ACC, IBA, IAA. Wild-type (wt) and ein3eil1 responses to hormonal treatments were compared, and the NO signal was quantified and its role evaluated by using NO-donors/scavengers. Ectopic-protoxylem increased in the wt only after treatment with JAMe(10 μM), whereas in ein3eil1 with any JAMe concentration. NO was detected in cells leading to either xylogenesis or adventitious rooting, and increased after treatment with JAMe(10 μM) combined or not with IBA(10 μM). Xylary identity changed when JAMe was applied with each auxin. Altogether, the results show that xylogenesis is induced by JA and NO positively regulates this process. In addition, NO also negatively interacts with ET-signalling and modulates auxin-induced xylary identity
The geometry of manifolds and the perception of space
This essay discusses the development of key geometric ideas in the 19th
century which led to the formulation of the concept of an abstract manifold
(which was not necessarily tied to an ambient Euclidean space) by Hermann Weyl
in 1913. This notion of manifold and the geometric ideas which could be
formulated and utilized in such a setting (measuring a distance between points,
curvature and other geometric concepts) was an essential ingredient in
Einstein's gravitational theory of space-time from 1916 and has played
important roles in numerous other theories of nature ever since.Comment: arXiv admin note: substantial text overlap with arXiv:1301.064
Multiple algebraisations of an elliptic Calogero-Sutherland model
Recently, Gomez-Ullate et al. (1) have studied a particular N-particle
quantum problem with an elliptic function potential supplemented by an external
field. They have shown that the Hamiltonian operator preserves a finite
dimensional space of functions and as such is quasi exactly solvable (QES). In
this paper we show that other types of invariant function spaces exist, which
are in close relation to the algebraic properties of the elliptic functions.
Accordingly, series of new algebraic eigenfunctions can be constructed.Comment: 9 Revtex pages, 3 PS-figures; Summary, abstract and conclusions
extende
Results on Multiple Coulomb Scattering from 12 and 20 GeV electrons on Carbon targets
Multiple scattering effects of 12 and 20 GeV electrons on 8 and 20 mm
thickness carbon targets have been studied with high-resolution silicon
microstrip detectors of the UA9 apparatus at the H8 line at CERN. Comparison of
the scattering angle between data and GEANT4 simulation shows excellent
agreement in the core of the distributions leaving some residual disagreement
in the tails.Comment: 14 pages, 16 figures. Updated to match published versio
Seleção de bactérias promotoras para produção orgânica de soja e trigo.
Errata/Autoria: BETTI, L. A
- …
