131 research outputs found

    Clarithromycin expands CD11b+Gr-1+ MDSC-like cells

    Get PDF
    Macrolides are used to treat various inflammatory diseases owing to their immunomodulatory properties; however, little is known about their precise mechanism of action. In this study, we investigated the functional significance of the expansion of myeloid-derived suppressor cell (MDSC)-like CD11b+Gr-1+ cells in response to the macrolide antibiotic clarithromycin (CAM) in mouse models of shock and post-influenza pneumococcal pneumonia as well as in humans. Intraperitoneal administration of CAM markedly expanded splenic and lung CD11b+Gr-1+ cell populations in naĆÆve mice. Notably, CAM pretreatment enhanced survival in a mouse model of lipopolysaccharide (LPS)-induced shock. In addition, adoptive transfer of CAM-treated CD11b+Gr-1+ cells protected mice against LPS-induced lethality via increased IL-10 expression. CAM also improved survival in post-influenza, CAM-resistant pneumococcal pneumonia, with improved lung pathology as well as decreased interferon (IFN)-Ī³ and increased IL-10 levels. Adoptive transfer of CAM-treated CD11b+Gr-1+ cells protected mice from post-influenza pneumococcal pneumonia. Further analysis revealed that the CAM-induced CD11b+Gr-1+ cell expansion was dependent on STAT3-mediated Bv8 production and may be facilitated by the presence of gut commensal microbiota. Lastly, an analysis of peripheral blood obtained from healthy volunteers following oral CAM administration showed a trend toward the expansion of human MDSC-like cells (Lineageāˆ’HLA-DRāˆ’CD11b+CD33+) with increased arginase 1 mRNA expression. Thus, CAM promoted the expansion of a unique population of immunosuppressive CD11b+Gr-1+ cells essential for the immunomodulatory properties of macrolides

    Neutrophil elastase cleaves the murine hemidesmosomal protein BP180/type XVII collagen and generates degradation products that modulate experimental bullous pemphigoid

    Get PDF
    Bullous pemphigoid (BP) is an autoimmune subepidermal blistering disease associated with autoantibodies against the hemidesmosomal proteins BP180 and BP230. In the IgG passive transfer model of BP, blister formation is triggered by anti-BP180 IgG and depends on complement activation, mast cell degranulation, and neutrophil recruitment. Mice lacking neutrophil elastase (NE) do not develop experimental BP. Here, we demonstrated that NE degrades recombinant mouse BP180 within the immunodominant extracellular domain at amino acid positions 506 and 561, generating peptide p561 and peptide p506. Peptide p561 is chemotactic for neutrophils both in vitro and in vivo. Local injection of NE into B6 mice recruits neutrophils to the skin, and neutrophil infiltration is completely blocked by co-injection with the NE inhibitor Ī±1-proteinase inhibitor. More importantly, NE directly cleaves BP180 in mouse and human skin, as well as the native human BP180 trimer molecule. These results demonstrate that (i) NE directly damages the extracellular matrix and (ii) NE degradation of mouse BP180 generates neutrophil chemotactic peptides that amplify disease severity at the early stage of the disease

    Effects of the common polymorphism in the human aldehyde dehydrogenase 2 (ALDH2) gene on the lung

    Get PDF
    BackgroundAldehyde dehydrogenases (ALDHs) play a major role in detoxification of aldehydes. High expression of ALDHs is a marker for stem cells of many organs including the lungs. A common polymorphism in ALDH2 gene (ALDH2*2) results in inactivation of the enzyme and is associated with alcohol flushing syndrome and increased risk for cardiovascular and Alzheimerā€™s diseases and some cancers. The effect of this ALDH2 polymorphism on the lung and its stem cells has not been thoroughly examined.MethodsWe examined the association between the ALDH2*2 allele and lung function parameters in a population of healthy individuals. We also examined its association with the incidence of asthma and COPD in patient cohorts. We used the in vitro colony forming assay to detect the effect of the polymorphism on lung epithelial stem cells from both primary human surgical samples and Aldh2*2 transgenic (Tg) and Aldh2 āˆ’/āˆ’ mice. Response to acute and chronic lung injuries was compared between wild type (WT), Aldh2*2 Tg and Aldh2 āˆ’/āˆ’ mice.ResultsIn humans, the ALDH2*2 allele was associated with lower FEV1/FVC in the general population, but not with the development of asthma or COPD. Both the bronchial and lung epithelium carrying the ALDH2*2 allele showed a tendency for lower colony forming efficiency (CFE) compared to ALDH2 allele. In mice, the tracheal epithelial thickness, nuclear density, and number of basal stem cells were significantly lower in Aldh2 āˆ’/āˆ’ and Aldh2*2 Tg adult mice than in WT. Electron microscopy showed significantly increased number of morphologically abnormal mitochondria in the trachea of Aldh2 āˆ’/āˆ’ mice. Aldh2 āˆ’/āˆ’ tracheal and lung cells showed higher ROS levels and fewer functional mitochondria than those from WT mice. No significant differences were detected when tracheal and lung epithelial stem cells were examined for their in vitro CFE. When exposed to chronic cigarette smoke, Aldh2*2 Tg mice were resistant to emphysema development, whereas influenza infection caused more epithelial damage in Aldh2 āˆ’/āˆ’ mice than in WT mice.ConclusionsALDH2 polymorphism has several subtle effects on the lungs, some of which are similar to changes observed during normal aging, suggesting a ā€œpremature lung agingā€ effect
    • ā€¦
    corecore