28 research outputs found
ΠΠΎΠ°Π³ΡΠ»ΠΎΠΏΠ°ΡΡΡ ΡΠΊ ΡΠ°ΠΊΡΠΎΡ ΡΠΈΠ·ΠΈΠΊΡ Π²Π΅Π½ΠΎΠ·Π½ΠΈΡ ΡΡΠΎΠΌΠ±ΠΎΠ·ΡΠ² ΡΠ° Π΅ΠΌΠ±ΠΎΠ»ΡΠΉ Ρ Ρ Π²ΠΎΡΠΈΡ Π· Π³ΠΎΡΡΡΠΈΠΌΠΈ Π½Π΅Π²Π°ΡΠΈΠΊΠΎΠ·Π½ΠΈΠΌΠΈ Π³Π°ΡΡΡΠΎΠ΄ΡΠΎΠ΄Π΅Π½Π°Π»ΡΠ½ΠΈΠΌΠΈ ΠΊΡΠΎΠ²ΠΎΡΠ΅ΡΠ°ΠΌΠΈ
The aim of the works: risk evaluation of venous thromboembolism in patients with acute nonvariceal gastrointestinal bleeding.Materials and Methods. Treatment results of 246 with acute nonvariceal gastrointestinal bleeding was carried out. Gastroduodenoscopy had been performed aiming to recognize source of bleeding and risk of rebleeding in accordance with J. Forrest classification as well. Duodenal peptic ulcer disease was recognized as main source of bleeding in 83.7 % of patients. Endoscopic haemostasis had performed in patients with ongoing bleeding and high risk of its recurrence: Forrest 1Π (2.5 %), Forrest 1Π (12.8 %) and Forrest 2Π (10.3 %), Forrest 2Π (19.4 %), respectively. Ten patients died (mortality β 4.1 %) but no one from ongoing bleeding. Acute cardiopulmonary insufficiency as the main cause of death was recognized. Proximal deep vein thrombosis was revealed in 2 patients and in 4 cases β pulmonary thromboembolism. Coagulation status was evaluated in accordance with local protocol.Results and Discussion. In 70.3 % of patients coagulation tests were in the normal limits, whereas hypercoagulation and hypocoagulation were recognized in 25.3 % and 4.4 % of cases, respectively. Hypercoagulation was recognized when shortening of clotting time, prothrombin time and elevated concentration of D-dimers were revealed. High risk of VTE according with Caprini score was calculated. Main VTE β risk factors were recognized: prolonged bed rest β more than 72 hours, age 61β74 years, previous VTE, central vein catheterization.Conclusions. Hypercoagulation in patients with acute nonvariceal gastrointestinal bleeding combined with other factors constituteshigh risk of VTE.Π¦Π΅Π»Ρ ΡΠ°Π±ΠΎΡΡ: ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΡ ΡΠΈΡΠΊ ΠΠ’Π Ρ Π±ΠΎΠ»ΡΠ½ΡΡ
Ρ ΠΎΡΡΡΡΠΌΠΈ ΠΆΠ΅Π»ΡΠ΄ΠΎΡΠ½ΠΎ-ΠΊΠΈΡΠ΅ΡΠ½ΡΠΌΠΈ ΠΊΡΠΎΠ²ΠΎΡΠ΅ΡΠ΅Π½ΠΈΡΠΌΠΈ Π½Π΅Π²Π°ΡΠΈΠΊΠΎΠ·Π½ΠΎΠ³ΠΎ Π³Π΅Π½Π΅Π·Π°.ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² Π»Π΅ΡΠ΅Π½ΠΈΡ 246 Π±ΠΎΠ»ΡΠ½ΡΡ
Ρ ΠΎΡΡΡΡΠΌΠΈ ΠΆΠ΅Π»ΡΠ΄ΠΎΡΠ½ΠΎ-ΠΊΠΈΡΠ΅ΡΠ½ΡΠΌΠΈ ΠΊΡΠΎΠ²ΠΎΡΠ΅ΡΠ΅Π½ΠΈΡΠΌΠΈ Π½Π΅Π²Π°ΡΠΈΠΊΠΎΠ·Π½ΠΎΠ³ΠΎ Π³Π΅Π½Π΅Π·Π°. ΠΡΠ΅ΠΌ Π±ΠΎΠ»ΡΠ½ΡΠΌ Ρ ΡΠ΅Π»ΡΡ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° ΠΊΡΠΎΠ²ΠΎΡΠ΅ΡΠ΅Π½ΠΈΡ Π²ΡΠΏΠΎΠ»Π½ΡΠ»ΠΈ ΡΠΈΠ±ΡΠΎΠ³Π°ΡΡΡΠΎΠ΄ΡΠΎΠ΄Π΅Π½ΠΎΡΠΊΠΎΠΏΠΈΡ (Π€ΠΠΠ‘) Π΄Π»Ρ ΠΏΠΎΠΈΡΠΊΠ° ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° Π³Π΅ΠΌΠΎΡΡΠ°Π³ΠΈΠΈ ΠΈ ΠΎΡΠ΅Π½ΠΊΠΈ ΡΠΈΡΠΊΠ° Π΅Π΅ ΡΠ΅ΡΠΈΠ΄ΠΈΠ²Π° ΠΏΠΎ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ J. Forrest. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π² 83,7 % Π±ΠΎΠ»ΡΠ½ΡΡ
ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠΌ Π³Π΅ΠΌΠΎΡΡΠ°Π³ΠΈΠΈ Π±ΡΠ»Π° ΡΠ·Π²Π° Π΄Π²Π΅Π½Π°Π΄ΡΠ°ΡΠΈΠΏΠ΅ΡΡΡΠ½ΠΎΠΉ ΠΊΠΈΡΠΊΠΈ. ΠΠΎΠΌΠ±ΠΈΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΎΠ½Π½ΠΎ-ΠΊΠΎΠ°Π³ΡΠ»ΡΡΠΈΠΎΠ½Π½ΡΠΉ Π³Π΅ΠΌΠΎΡΡΠ°Π· ΠΏΡΠΈΠΌΠ΅Π½ΡΠ»ΠΈ Π² ΡΠ»ΡΡΠ°ΡΡ
ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ°ΡΡΠ΅ΠΉΡΡ Π³Π΅ΠΌΠΎΡΡΠ°Π³ΠΈΠΈ ΠΈ ΡΡΠΈΠ³ΠΌΠ°ΡΠ°Ρ
Π½Π΅ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ Π³Π΅ΠΌΠΎΡΡΠ°Π·Π° β Forrest 1Π (2,5 %), Forrest 1Π (12,8 %) ΠΈ Forrest 2Π (10,3 %), Forrest 2Π (19,4 %), Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ. Π£ΠΌΠ΅ΡΠ»ΠΈ 10 Π±ΠΎΠ»ΡΠ½ΡΡ
Ρ ΠΎΡΡΡΡΠΌΠΈ ΠΆΠ΅Π»ΡΠ΄ΠΎΡΠ½ΠΎ-ΠΊΠΈΡΠ΅ΡΠ½ΡΠΌΠΈ ΠΊΡΠΎΠ²ΠΎΡΠ΅ΡΠ΅Π½ΠΈΡΠΌΠΈ (ΠΠΠΠ) (ΠΎΠ±ΡΠ°Ρ Π»Π΅ΡΠ°Π»ΡΠ½ΠΎΡΡΡ β 4,1 %) Π½ΠΈ ΠΎΠ΄ΠΈΠ½ β ΠΎΡ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ°ΡΡΠ΅Π³ΠΎΡΡ ΠΊΡΠΎΠ²ΠΎΡΠ΅ΡΠ΅Π½ΠΈΡ. ΠΡΠΈΡΠΈΠ½ΠΎΠΉ Π»Π΅ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΡΡ
ΠΎΠ΄Π° Π²ΠΎ Π²ΡΠ΅Ρ
ΡΠ»ΡΡΠ°ΡΡ
ΠΏΡΠΈΠ·Π½Π°Π½ΠΎ ΡΠ΅ΡΠ΄Π΅ΡΠ½ΠΎ-Π»Π΅Π³ΠΎΡΠ½ΡΡ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΡΡΡ. Π 2 ΡΠΌΠ΅ΡΡΠΈΡ
Π²ΠΎ Π²ΡΠ΅ΠΌΡ Π°ΡΡΠΎΠΏΡΠΈΠΈ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΎ ΠΏΡΠΎΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ ΡΠ»Π΅Π±ΠΎΡΡΠΎΠΌΠ±ΠΎΠ·, Ρ 4 β ΡΡΠΎΠΌΠ±ΠΎΠ· ΠΈ ΡΠΌΠ±ΠΎΠ»ΠΈΡ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠ½ΡΡ
Π²Π΅ΡΠ²Π΅ΠΉ Π»Π΅Π³ΠΎΡΠ½ΠΎΠΉ Π°ΡΡΠ΅ΡΠΈΠΈ. Π‘ΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ Π³Π΅ΠΌΠΎΡΡΠ°Π·Π° ΠΎΡΠ΅Π½ΠΈΠ²Π°Π»ΠΈ ΠΏΠΎ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠΌ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠΉ ΠΊΠΎΠ°Π³ΡΠ»ΠΎΠ³ΡΠ°ΠΌΠΌΡ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΠΈ ΠΈΡ
ΠΎΠ±ΡΡΠΆΠ΄Π΅Π½ΠΈΠ΅. ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π΅ ΠΎΠ±Π½Π°ΡΡΠΆΡΠ»ΠΎ ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠΉ Π² ΠΊΠΎΠ°Π³ΡΠ»ΡΡΠΈΠΎΠ½Π½ΡΡ
ΡΠ΅ΡΡΠ°Ρ
Π² 70,3 % Π±ΠΎΠ»ΡΠ½ΡΡ
Ρ ΠΠΠΠ, Π³ΠΈΠΏΠ΅ΡΠΊΠΎΠ°Π³ΡΠ»ΡΡΠΈΠΈ β Π² 25,3 %, Π³ΠΈΠΏΠΎΠΊΠΎΠ°Π³ΡΠ»ΡΡΠΈΡ β Π² 4,4 % ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ². Π ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΠΎΠΌ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»Π΅ ΠΊΡΠΎΠ²ΠΈ ΠΊ ΡΠ²Π΅ΡΡΡΠ²Π°Π½ΠΈΡ ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΠΎΠ²Π°Π»ΠΈ: ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠ΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ²Π΅ΡΡΡΠ²Π°Π½ΠΈΡ ΠΊΡΠΎΠ²ΠΈ, ΠΏΡΠΎΡΡΠΎΠΌΠ±ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΡΠΉ ΡΡΠΎΠ²Π΅Π½Ρ ΡΠ°ΡΡΠ²ΠΎΡΠΈΠΌΡΡ
ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² ΠΌΠΎΠ½ΠΎΠΌΠ΅ΡΠ½ΡΡ
ΡΠΈΠ±ΡΠΈΠ½ΠΎΠ² (Π ΠΠΠ€). ΠΡΠ΅ Π±ΠΎΠ»ΡΠ½ΡΠ΅ ΠΠΠΠ, Π² ΠΊΠΎΡΠΎΡΡΡ
ΠΊΠΎΠ½ΡΡΠ°ΡΠΈΡΠΎΠ²Π°Π½ΠΎ Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠ½ΡΠ΅ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΈ Π³ΠΈΠΏΠ΅ΡΠΊΠΎΠ°Π³ΡΠ»ΡΡΠΈΠΈ, ΠΈΠΌΠ΅Π»ΠΈ Π²ΡΡΠΎΠΊΠΈΠΉ ΡΠΈΡΠΊ ΠΠ’Π ΠΏΠΎ ΠΎΠ±ΡΠ΅ΠΏΡΠΈΠ·Π½Π°Π½Π½ΠΎΠΉ ΡΠΊΠ°Π»Π΅ J. Caprini. Π€Π°ΠΊΡΠΎΡΠ°ΠΌΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΎΠ±ΡΡΠ»ΠΎΠ²ΠΈΠ»ΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ ΡΠΈΡΠΊ ΠΠ’Π, Π±ΡΠ»ΠΈ: ΠΏΠΎΡΡΠ΅Π»ΡΠ½ΡΠΉ ΡΠ΅ΠΆΠΈΠΌ Π±ΠΎΠ»Π΅Π΅ 72 Ρ, Π²ΠΎΠ·ΡΠ°ΡΡ 61β74 Π³ΠΎΠ΄Π°, Π²Π΅Π½ΠΎΠ·Π½ΡΠ΅ ΡΡΠΎΠΌΠ±ΠΎΠ·Ρ Π² Π°Π½Π°ΠΌΠ½Π΅Π·Π΅, ΠΊΠ°ΡΠ΅ΡΠ΅ΡΠΈΠ·Π°ΡΠΈΡ ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΡΡ
Π²Π΅Π½. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π³ΠΈΠΏΠ΅ΡΠΊΠΎΠ°Π³ΡΠ»ΡΡΠΈΡ Ρ Π±ΠΎΠ»ΡΠ½ΡΡ
Ρ ΠΎΡΡΡΡΠΌΠΈ Π½Π΅Π²Π°ΡΠΈΠΊΠΎΠ·Π½ΡΠΌΠΈ Π³Π°ΡΡΡΠΎΠ΄ΡΠΎΠ΄Π΅Π½Π°Π»ΡΠ½ΡΠΌΠΈ ΠΊΡΠΎΠ²ΠΎΡΠ΅ΡΠ΅Π½ΠΈΡΠΌΠΈ ΠΏΡΠΈ ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΠΈ Ρ Π΄ΡΡΠ³ΠΈΠΌΠΈ ΡΠ°ΠΊΡΠΎΡΠ°ΠΌΠΈ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ Π²ΡΡΠΎΠΊΠΈΠΉ ΡΠΈΡΠΊ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΡ Π²Π΅Π½ΠΎΠ·Π½ΡΡ
ΡΡΠΎΠΌΠ±ΠΎΠ·ΠΎΠ² ΠΈ ΡΠΌΠ±ΠΎΠ»ΠΈΠΈ.ΠΠ΅ΡΠ° ΡΠΎΠ±ΠΎΡΠΈ: Π΄ΠΎΡΠ»ΡΠ΄ΠΈΡΠΈ ΡΠΈΠ·ΠΈΠΊ ΠΠ’Π Ρ Ρ
Π²ΠΎΡΠΈΡ
ΡΠ· Π³ΠΎΡΡΡΠΈΠΌΠΈ ΡΠ»ΡΠ½ΠΊΠΎΠ²ΠΎ-ΠΊΠΈΡΠΊΠΎΠ²ΠΈΠΌΠΈ ΠΊΡΠΎΠ²ΠΎΡΠ΅ΡΠ°ΠΌΠΈ Π½Π΅Π²Π°ΡΠΈΠΊΠΎΠ·Π½ΠΎΠ³ΠΎ Π³Π΅Π½Π΅Π·Ρ.ΠΠ°ΡΠ΅ΡΡΠ°Π»ΠΈ Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π°Π½Π°Π»ΡΠ· ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡΠ² Π»ΡΠΊΡΠ²Π°Π½Π½Ρ 246 Ρ
Π²ΠΎΡΠΈΡ
ΡΠ· Π³ΠΎΡΡΡΠΈΠΌΠΈ ΡΠ»ΡΠ½ΠΊΠΎΠ²ΠΎ-ΠΊΠΈΡΠΊΠΎΠ²ΠΈΠΌΠΈ ΠΊΡΠΎΠ²ΠΎΡΠ΅ΡΠ°ΠΌΠΈ Π½Π΅Π²Π°ΡΠΈΠΊΠΎΠ·Π½ΠΎΠ³ΠΎ Π³Π΅Π½Π΅Π·Ρ. Π£ΡΡΠΌ Ρ
Π²ΠΎΡΠΈΠΌ Π· ΠΌΠ΅ΡΠΎΡ Π΄ΡΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ Π΄ΠΆΠ΅ΡΠ΅Π»Π° ΠΊΡΠΎΠ²ΠΎΡΠ΅ΡΡ Π²ΠΈΠΊΠΎΠ½ΡΠ²Π°Π»ΠΈ ΡΡΠ±ΡΠΎΠ³Π°ΡΡΡΠΎΠ΄ΡΠΎΠ΄Π΅Π½ΠΎΡΠΊΠΎΠΏΡΡ (Π€ΠΠΠ‘) Π΄Π»Ρ ΠΏΠΎΡΡΠΊΡ Π΄ΠΆΠ΅ΡΠ΅Π»Π° Π³Π΅ΠΌΠΎΡΠ°Π³ΡΡ ΡΠ° ΠΎΡΡΠ½ΠΊΠΈ ΡΠΈΠ·ΠΈΠΊΡ ΡΡ ΡΠ΅ΡΠΈΠ΄ΠΈΠ²Ρ Π·Π° ΠΊΠ»Π°ΡΠΈΡΡΠΊΠ°ΡΡΡΡ J. Forrest. ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΠΎ Ρ 83,7 % Ρ
Π²ΠΎΡΠΈΡ
Π΄ΠΆΠ΅ΡΠ΅Π»ΠΎΠΌ Π³Π΅ΠΌΠΎΡΠ°Π³ΡΡ Π±ΡΠ»Π° ΠΏΠ΅ΠΏΡΠΈΡΠ½Π° Π²ΠΈΡΠ°Π·ΠΊΠ° Π΄Π²Π°Π½Π°Π΄ΡΡΡΠΈΠΏΠ°Π»ΠΎΡ ΠΊΠΈΡΠΊΠΈ. ΠΠΎΠΌΠ±ΡΠ½ΠΎΠ²Π°Π½ΠΈΠΉ ΡΠ½βΡΠΊΡΡΠΉΠ½ΠΎ-ΠΊΠΎΠ°Π³ΡΠ»ΡΡΡΠΉΠ½ΠΈΠΉ Π³Π΅ΠΌΠΎΡΡΠ°Π· Π·Π°ΡΡΠΎΡΠΎΠ²ΡΠ²Π°Π»ΠΈ Ρ Π²ΠΈΠΏΠ°Π΄ΠΊΠ°Ρ
ΡΡΠΈΠ²Π°ΡΡΠΎΡ Π³Π΅ΠΌΠΎΡΠ°Π³ΡΡ ΡΠ° ΡΡΠΈΠ³ΠΌΠ°ΡΠ°Ρ
Π½Π΅ΡΡΠ°Π±ΡΠ»ΡΠ½ΠΎΠ³ΠΎ Π³Π΅ΠΌΠΎΡΡΠ°Π·Ρ β Forrest 1Π (2,5 %), Forrest 1Π (12,8 %) ΡΠ° Forrest 2Π (10,3 %), Forrest 2Π (19,4 %), Π²ΡΠ΄ΠΏΠΎΠ²ΡΠ΄Π½ΠΎ. ΠΠΎΠΌΠ΅ΡΠ»ΠΈ 10 Ρ
Π²ΠΎΡΠΈΡ
ΡΠ· ΠΠ¨ΠΠ (Π·Π°Π³Π°Π»ΡΠ½Π° Π»Π΅ΡΠ°Π»ΡΠ½ΡΡΡΡ β 4,1 %), ΠΆΠΎΠ΄Π΅Π½ β Π²ΡΠ΄ ΡΡΠΈΠ²Π°ΡΡΠΎΡ ΠΊΡΠΎΠ²ΠΎΡΠ΅ΡΡ. ΠΡΠΈΡΠΈΠ½ΠΎΡ Π»Π΅ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π² ΡΡΡΡ
Π²ΠΈΠΏΠ°Π΄ΠΊΠ°Ρ
Π²ΠΈΠ·Π½Π°Π½ΠΎ ΡΠ΅ΡΡΠ΅Π²ΠΎ-Π»Π΅Π³Π΅Π½Π΅Π²Ρ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠ½ΡΡΡΡ. Π£ 2 ΠΏΠΎΠΌΠ΅ΡΠ»ΠΈΡ
ΠΏΡΠ΄ ΡΠ°Ρ Π°Π²ΡΠΎΠΏΡΡΡ Π²ΠΈΡΠ²Π»Π΅Π½ΠΎ ΠΏΡΠΎΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΈΠΉ ΡΠ»Π΅Π±ΠΎΡΡΠΎΠΌΠ±ΠΎΠ·, Ρ 4 β ΡΡΠΎΠΌΠ±ΠΎΠ· ΡΠ° Π΅ΠΌΠ±ΠΎΠ»ΡΡ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠ½ΠΈΡ
Π³ΡΠ»ΠΎΠΊ Π»Π΅Π³Π΅Π½Π΅Π²ΠΎΡ Π°ΡΡΠ΅ΡΡΡ. Π‘ΡΠ°Π½ ΡΠΈΡΡΠ΅ΠΌΠΈ Π³Π΅ΠΌΠΎΡΡΠ°Π·Ρ ΠΎΡΡΠ½ΡΠ²Π°Π»ΠΈ Π·Π° ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠ°ΠΌΠΈ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΡ ΠΊΠΎΠ°Π³ΡΠ»ΠΎΠ³ΡΠ°ΠΌΠΈ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΠΈ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Ρ ΡΠ° ΡΡ
ΠΎΠ±Π³ΠΎΠ²ΠΎΡΠ΅Π½Π½Ρ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π΅ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ Π½Π΅ Π²ΠΈΡΠ²ΠΈΠ»ΠΎ ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΈΡ
Π²ΡΠ΄Ρ
ΠΈΠ»Π΅Π½Ρ Ρ ΠΊΠΎΠ°Π³ΡΠ»ΡΡΡΠΉΠ½ΠΈΡ
ΡΠ΅ΡΡΠ°Ρ
Ρ 70,3 % Ρ
Π²ΠΎΡΠΈΡ
Π· ΠΠ¨ΠΠ, Π³ΡΠΏΠ΅ΡΠΊΠΎΠ°Π³ΡΠ»ΡΡΡΡ β Ρ 25,3 %, Π³ΡΠΏΠΎΠΊΠΎΠ°Π³ΡΠ»ΡΡΡΡ β Ρ 4,4 % ΠΏΠ°ΡΡΡΠ½ΡΡΠ². ΠΡΠΎ ΠΏΡΠ΄Π²ΠΈΡΠ΅Π½ΠΈΠΉ ΠΏΠΎΡΠ΅Π½ΡΡΠ°Π» ΠΊΡΠΎΠ²Ρ Π΄ΠΎ Π·ΡΡΠ΄Π°Π½Π½Ρ ΡΠ²ΡΠ΄ΡΠΈΠ»ΠΈ Π²ΠΊΠΎΡΠΎΡΠ΅Π½Π½Ρ ΡΠ°ΡΡ Π·ΡΡΠ΄Π°Π½Π½Ρ ΠΊΡΠΎΠ²Ρ, ΠΏΡΠΎΡΡΠΎΠΌΠ±ΡΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΡΠ°ΡΡ, ΠΏΡΠ΄Π²ΠΈΡΠ΅Π½ΠΈΠΉ ΡΡΠ²Π΅Π½Ρ ΡΠΎΠ·ΡΠΈΠ½Π½ΠΈΡ
ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΡΠ² ΡΡΠ±ΡΠΈΠ½Ρ ΠΌΠΎΠ½ΠΎΠΌΠ΅ΡΡΠ² (Π ΠΠΠ€). Π£ΡΡ Ρ
Π²ΠΎΡΡ Π½Π° ΠΠ¨ΠΠ, Π² ΡΠΊΠΈΡ
ΠΊΠΎΠ½ΡΡΠ°ΡΠΎΠ²Π°Π½ΠΎ Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠ½Ρ ΠΎΠ·Π½Π°ΠΊΠΈ Π³ΡΠΏΠ΅ΡΠΊΠΎΠ°Π³ΡΠ»ΡΡΡΡ, ΠΌΠ°Π»ΠΈ Π²ΠΈΡΠΎΠΊΠΈΠΉ ΡΠΈΠ·ΠΈΠΊ ΠΠ’Π Π·Π° Π·Π°Π³Π°Π»ΡΠ½ΠΎΠ²ΠΈΠ·Π½Π°Π½ΠΎΡ ΡΠΊΠ°Π»ΠΎΡ J. Caprini. Π€Π°ΠΊΡΠΎΡΠ°ΠΌΠΈ, ΡΠΎ Π·ΡΠΌΠΎΠ²ΠΈΠ»ΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΈΠΉ ΡΠΈΠ·ΠΈΠΊ ΠΠ’Π, Π±ΡΠ»ΠΈ: Π»ΡΠΆΠΊΠΎΠ²ΠΈΠΉ ΡΠ΅ΠΆΠΈΠΌ Π±ΡΠ»ΡΡΠ΅ 72 Π³ΠΎΠ΄, Π²ΡΠΊ 61β74 ΡΠΎΠΊΠΈ, Π²Π΅Π½ΠΎΠ·Π½Ρ ΡΡΠΎΠΌΠ±ΠΎΠ·ΠΈ Π² Π°Π½Π°ΠΌΠ½Π΅Π·Ρ, ΠΊΠ°ΡΠ΅ΡΠ΅ΡΠΈΠ·Π°ΡΡΡ ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΠΈΡ
Π²Π΅Π½. Π’Π°ΠΊΠΈΠΌ ΡΠΈΠ½ΠΎΠΌ, Π³ΡΠΏΠ΅ΡΠΊΠΎΠ°Π³ΡΠ»ΡΡΡΡ Ρ Ρ
Π²ΠΎΡΠΈΡ
Π· Π³ΠΎΡΡΡΠΈΠΌΠΈ Π½Π΅Π²Π°ΡΠΈΠΊΠΎΠ·Π½ΠΈΠΌΠΈ Π³Π°ΡΡΡΠΎΠ΄ΡΠΎΠ΄Π΅Π½Π°Π»ΡΠ½ΠΈΠΌΠΈ ΠΊΡΠΎΠ²ΠΎΡΠ΅ΡΠ°ΠΌΠΈ ΠΏΡΠΈ ΠΏΠΎΡΠ΄Π½Π°Π½Π½Ρ Π· ΡΠ½ΡΠΈΠΌΠΈ ΡΠ°ΠΊΡΠΎΡΠ°ΠΌΠΈ ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡ Π²ΠΈΡΠΎΠΊΠΈΠΉ ΡΠΈΠ·ΠΈΠΊ Π²ΠΈΠ½ΠΈΠΊΠ½Π΅Π½Π½Ρ Π²Π΅Π½ΠΎΠ·Π½ΠΈΡ
ΡΡΠΎΠΌΠ±ΠΎΠ·ΡΠ² ΡΠ° Π΅ΠΌΠ±ΠΎΠ»ΡΠΉ
Nambu-Goldstone Dark Matter and Cosmic Ray Electron and Positron Excess
We propose a model of dark matter identified with a pseudo-Nambu-Goldstone
boson in the dynamical supersymmetry breaking sector in a gauge mediation
scenario. The dark matter particles annihilate via a below-threshold narrow
resonance into a pair of R-axions each of which subsequently decays into a pair
of light leptons. The Breit-Wigner enhancement explains the excess electron and
positron fluxes reported in the recent cosmic ray experiments PAMELA, ATIC and
PPB-BETS without postulating an overdensity in halo, and the limit on
anti-proton flux from PAMELA is naturally evaded.Comment: 3 figure
ATIC and PAMELA Results on Cosmic e^\pm Excesses and Neutrino Masses
Recently the ATIC and PAMELA collaborations released their results which show
the abundant e^\pm excess in cosmic rays well above the background, but not for
the \bar{p}. Their data if interpreted as the dark matter particles'
annihilation imply that the new physics with the dark matter is closely related
to the lepton sector. In this paper we study the possible connection of the new
physics responsible for the cosmic e^\pm excesses to the neutrino mass
generation. We consider a class of models and do the detailed numerical
calculations. We find that these models can natually account for the ATIC and
PAMELA e^\pm and \bar{p} data and at the same time generate the small neutrino
masses.Comment: 7 pages, 5 figures. Published version with minor corrections and more
reference
R-parity preserving super-WIMP decays
We point out that when the decay of one electroweak scale super-WIMP state to
another occurs at second order in a super-weak coupling constant, this can
naturally lead to decay lifetimes that are much larger than the age of the
Universe, and create observable consequences for the indirect detection of dark
matter. We demonstrate this in a supersymmetric model with Dirac neutrinos,
where the right-handed scalar neutrinos are the lightest and next-to-lightest
supersymmetric partners. We show that this model produces a super-WIMP decay
rate scaling as m_nu^4/(weak scale)^3, and may significantly enhance the
fraction of energetic electrons and positrons over anti-protons in the decay
products. Such a signature is consistent with the observations recently
reported by the PAMELA experiment.Comment: 14 pages, v3 JHEP versio
Dark Matter Model Selection and the ATIC/PPB-BETS anomaly
We argue that we may be able to sort out dark matter models in which
electrons are generated through the annihilation and/or decay of dark matter,
by using a fact that the initial energy spectrum is reflected in the cosmic-ray
electron flux observed at the Earth even after propagation through the galactic
magnetic field. To illustrate our idea we focus on three representative initial
spectra: (i)monochromatic (ii)flat and (iii)double-peak ones. We find that
those three cases result in significantly different energy spectra, which may
be probed by the Fermi satellite in operation or an up-coming cosmic-ray
detector such as CALET.Comment: 19 pages, 8 figure
Scalar Multiplet Dark Matter
We perform a systematic study of the phenomenology associated to models where
the dark matter consists in the neutral component of a scalar SU(2)_L n-uplet,
up to n=7. If one includes only the pure gauge induced annihilation
cross-sections it is known that such particles provide good dark matter
candidates, leading to the observed dark matter relic abundance for a
particular value of their mass around the TeV scale. We show that these values
actually become ranges of values -which we determine- if one takes into account
the annihilations induced by the various scalar couplings appearing in these
models. This leads to predictions for both direct and indirect detection
signatures as a function of the dark matter mass within these ranges. Both can
be largely enhanced by the quartic coupling contributions. We also explain how,
if one adds right-handed neutrinos to the scalar doublet case, the results of
this analysis allow to have altogether a viable dark matter candidate,
successful generation of neutrino masses, and leptogenesis in a particularly
minimal way with all new physics at the TeV scale.Comment: 43 pages, 20 figure
Implications of the Fermi-LAT diffuse gamma-ray measurements on annihilating or decaying Dark Matter
We analyze the recently published Fermi-LAT diffuse gamma-ray measurements in
the context of leptonically annihilating or decaying dark matter (DM) with the
aim to explain simultaneously the isotropic diffuse gamma-ray and the PAMELA,
Fermi and HESS (PFH) anomalous data. Five different DM
annihilation/decay channels , , , , or (the latter
two via an intermediate light particle ) are generated with PYTHIA. We
calculate both the Galactic and extragalactic prompt and inverse Compton (IC)
contributions to the resulting gamma-ray spectra. To find the Galactic IC
spectra we use the interstellar radiation field model from the latest release
of GALPROP. For the extragalactic signal we show that the amplitude of the
prompt gamma-emission is very sensitive to the assumed model for the
extragalactic background light. For our Galaxy we use the Einasto, NFW and
Isothermal DM density profiles and include the effects of DM substructure
assuming a simple subhalo model. Our calculations show that for the
annihilating DM the extragalactic gamma-ray signal can dominate only if rather
extreme power-law concentration-mass relation is used, while more
realistic relations make the extragalactic component comparable or
subdominant to the Galactic signal. For the decaying DM the Galactic signal
always exceeds the extragalactic one. In the case of annihilating DM the PFH
favored parameters can be ruled out only if power-law relation is
assumed. For DM decaying into or the PFH favored DM parameters
are not in conflict with the Fermi gamma-ray data. We find that, due to the
(almost) featureless Galactic IC spectrum and the DM halo substructure,
annihilating DM may give a good simultaneous fit to the isotropic diffuse
gamma-ray and to the PFH data without being in clear conflict with the
other Fermi-LAT gamma-ray measurements.Comment: Accepted for publication in JCAP, added missing references, new Figs.
9 \& 10, 35 page
The Leptonic Higgs as a Messenger of Dark Matter
We propose that the leptonic cosmic ray signals seen by PAMELA and ATIC
result from the annihilation or decay of dark matter particles via states of a
leptonic Higgs doublet to leptons, linking cosmic ray signals of dark
matter to LHC signals of the Higgs sector. The states of the leptonic Higgs
doublet are lighter than about 200 GeV, yielding large and
event rates at the LHC. Simple models are
given for the dark matter particle and its interactions with the leptonic
Higgs, for cosmic ray signals arising from both annihilations and decays in the
galactic halo. For the case of annihilations, cosmic photon and neutrino
signals are on the verge of discovery.Comment: 34 pages, 9 figures, minor typos corrected, references adde
Gravitational reheating in quintessential inflation
We provide a detailed study of gravitational reheating in quintessential
inflation generalizing previous analyses only available for the standard case
when inflation is followed by an era dominated by the energy density of
radiation. Quintessential inflation assumes a common origin for inflation and
the dark energy of the Universe. In this scenario reheating can occur through
gravitational particle production during the inflation-kination transition. We
calculate numerically the amount of the radiation energy density, and determine
the temperature at which radiation starts dominating over kination. The
value of is controlled by the Hubble parameter during inflation and
the transition time , scaling as
for and for . The model-dependent parameter is found to be around 0.5 in two
different parametrizations for the transition between inflation and kination.Comment: 12 pages, 5 figure