28 research outputs found

    ΠšΠΎΠ°Π³ΡƒΠ»ΠΎΠΏΠ°Ρ‚Ρ–Ρ як Ρ„Π°ΠΊΡ‚ΠΎΡ€ Ρ€ΠΈΠ·ΠΈΠΊΡƒ Π²Π΅Π½ΠΎΠ·Π½ΠΈΡ… Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΠ·Ρ–Π² Ρ‚Π° Π΅ΠΌΠ±ΠΎΠ»Ρ–ΠΉ Ρƒ Ρ…Π²ΠΎΡ€ΠΈΡ… Π· гострими Π½Π΅Π²Π°Ρ€ΠΈΠΊΠΎΠ·Π½ΠΈΠΌΠΈ Π³Π°ΡΡ‚Ρ€ΠΎΠ΄ΡƒΠΎΠ΄Π΅Π½Π°Π»ΡŒΠ½ΠΈΠΌΠΈ ΠΊΡ€ΠΎΠ²ΠΎΡ‚Π΅Ρ‡Π°ΠΌΠΈ

    Get PDF
    The aim of the works: risk evaluation of venous thromboembolism in patients with acute nonvariceal gastrointestinal bleeding.Materials and Methods. Treatment results of 246 with acute nonvariceal gastrointestinal bleeding was carried out. Gastroduodenoscopy had been performed aiming to recognize source of bleeding and risk of rebleeding in accordance with J. Forrest classification as well. Duodenal peptic ulcer disease was recognized as main source of bleeding in 83.7 % of patients. Endoscopic haemostasis had performed in patients with ongoing bleeding and high risk of its recurrence: Forrest 1А (2.5 %), Forrest 1Π’ (12.8 %) and Forrest 2А (10.3 %), Forrest 2Π’ (19.4 %), respectively. Ten patients died (mortality – 4.1 %) but no one from ongoing bleeding. Acute cardiopulmonary insufficiency as the main cause of death was recognized. Proximal deep vein thrombosis was revealed in 2 patients and in 4 cases – pulmonary thromboembolism. Coagulation status was evaluated in accordance with local protocol.Results and Discussion. In 70.3 % of patients coagulation tests were in the normal limits, whereas hypercoagulation and hypocoagulation were recognized in 25.3 % and 4.4 % of cases, respectively. Hypercoagulation was recognized when shortening of clotting time, prothrombin time and elevated concentration of D-dimers were revealed. High risk of VTE according with Caprini score was calculated. Main VTE – risk factors were recognized: prolonged bed rest – more than 72 hours, age 61–74 years, previous VTE, central vein catheterization.Conclusions. Hypercoagulation in patients with acute nonvariceal gastrointestinal bleeding combined with other factors constituteshigh risk of VTE.ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹: ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ риск Π’Π’Π­ Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с острыми ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡Π½ΠΎ-ΠΊΠΈΡˆΠ΅Ρ‡Π½Ρ‹ΠΌΠΈ кровотСчСниями Π½Π΅Π²Π°Ρ€ΠΈΠΊΠΎΠ·Π½ΠΎΠ³ΠΎ Π³Π΅Π½Π΅Π·Π°.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² лСчСния 246 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с острыми ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡Π½ΠΎ-ΠΊΠΈΡˆΠ΅Ρ‡Π½Ρ‹ΠΌΠΈ кровотСчСниями Π½Π΅Π²Π°Ρ€ΠΈΠΊΠΎΠ·Π½ΠΎΠ³ΠΎ Π³Π΅Π½Π΅Π·Π°. ВсСм Π±ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ с Ρ†Π΅Π»ΡŒΡŽ диагностики источника кровотСчСния выполняли Ρ„ΠΈΠ±Ρ€ΠΎΠ³Π°ΡΡ‚Ρ€ΠΎΠ΄ΡƒΠΎΠ΄Π΅Π½ΠΎΡΠΊΠΎΠΏΠΈΡŽ (Π€Π“Π”Π‘) для поиска источника Π³Π΅ΠΌΠΎΡ€Ρ€Π°Π³ΠΈΠΈ ΠΈ ΠΎΡ†Π΅Π½ΠΊΠΈ риска Π΅Π΅ Ρ€Π΅Ρ†ΠΈΠ΄ΠΈΠ²Π° ΠΏΠΎ классификации J. Forrest. УстановлСно, Ρ‡Ρ‚ΠΎ Π² 83,7 % Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… источником Π³Π΅ΠΌΠΎΡ€Ρ€Π°Π³ΠΈΠΈ Π±Ρ‹Π»Π° язва двСнадцатипСрстной кишки. ΠšΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ ΠΈΠ½ΡŠΠ΅ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎ-коагуляционный гСмостаз примСняли Π² случаях ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°ΡŽΡ‰Π΅ΠΉΡΡ Π³Π΅ΠΌΠΎΡ€Ρ€Π°Π³ΠΈΠΈ ΠΈ стигматах Π½Π΅ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ гСмостаза – Forrest 1А (2,5 %), Forrest 1Π’ (12,8 %) ΠΈ Forrest 2А (10,3 %), Forrest 2Π’ (19,4 %), Π² соотвСтствии. Π£ΠΌΠ΅Ρ€Π»ΠΈ 10 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с острыми ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡Π½ΠΎ-ΠΊΠΈΡˆΠ΅Ρ‡Π½Ρ‹ΠΌΠΈ кровотСчСниями (ΠžΠ–ΠšΠš) (общая Π»Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ – 4,1 %) Π½ΠΈ ΠΎΠ΄ΠΈΠ½ – ΠΎΡ‚ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°ΡŽΡ‰Π΅Π³ΠΎΡΡ кровотСчСния. ΠŸΡ€ΠΈΡ‡ΠΈΠ½ΠΎΠΉ Π»Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ исхода Π²ΠΎ всСх случаях ΠΏΡ€ΠΈΠ·Π½Π°Π½ΠΎ сСрдСчно-Π»Π΅Π³ΠΎΡ‡Π½ΡƒΡŽ Π½Π΅Π΄ΠΎΡΡ‚Π°Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ. Π’ 2 ΡƒΠΌΠ΅Ρ€ΡˆΠΈΡ… Π²ΠΎ врСмя аутопсии ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ ΠΏΡ€ΠΎΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ Ρ„Π»Π΅Π±ΠΎΡ‚Ρ€ΠΎΠΌΠ±ΠΎΠ·, Ρƒ 4 – Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΠ· ΠΈ эмболию сСгмСнтарных Π²Π΅Ρ‚Π²Π΅ΠΉ Π»Π΅Π³ΠΎΡ‡Π½ΠΎΠΉ Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠΈ. БостояниС систСмы гСмостаза ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ ΠΏΠΎ показатСлям стандартной ΠΊΠΎΠ°Π³ΡƒΠ»ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдований ΠΈ ΠΈΡ… обсуТдСниС. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ΅ исслСдованиС Π½Π΅ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΡ‹Π»ΠΎ патологичСских ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠΉ Π² коагуляционных тСстах Π² 70,3 % Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с ΠžΠ–ΠšΠš, гипСркоагуляции – Π² 25,3 %, Π³ΠΈΠΏΠΎΠΊΠΎΠ°Π³ΡƒΠ»ΡΡ†ΠΈΡŽ – Π² 4,4 % ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ². О ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠΌ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π΅ ΠΊΡ€ΠΎΠ²ΠΈ ΠΊ ΡΠ²Π΅Ρ€Ρ‚Ρ‹Π²Π°Π½ΠΈΡŽ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎΠ²Π°Π»ΠΈ: ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ свСртывания ΠΊΡ€ΠΎΠ²ΠΈ, ΠΏΡ€ΠΎΡ‚Ρ€ΠΎΠΌΠ±ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½Ρ‹ΠΉ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ растворимых комплСксов ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€Π½Ρ‹Ρ… Ρ„ΠΈΠ±Ρ€ΠΈΠ½ΠΎΠ² (РКМЀ). ВсС Π±ΠΎΠ»ΡŒΠ½Ρ‹Π΅ ΠžΠ–ΠšΠš, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… констатировано Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹Π΅ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ гипСркоагуляции, ΠΈΠΌΠ΅Π»ΠΈ высокий риск Π’Π’Π­ ΠΏΠΎ ΠΎΠ±Ρ‰Π΅ΠΏΡ€ΠΈΠ·Π½Π°Π½Π½ΠΎΠΉ шкалС J. Caprini. Π€Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ обусловили ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ риск Π’Π’Π­, Π±Ρ‹Π»ΠΈ: ΠΏΠΎΡΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Ρ€Π΅ΠΆΠΈΠΌ Π±ΠΎΠ»Π΅Π΅ 72 Ρ‡, возраст 61–74 Π³ΠΎΠ΄Π°, Π²Π΅Π½ΠΎΠ·Π½Ρ‹Π΅ Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΠ·Ρ‹ Π² Π°Π½Π°ΠΌΠ½Π΅Π·Π΅, катСтСризация Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… Π²Π΅Π½. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, гипСркоагуляция Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с острыми Π½Π΅Π²Π°Ρ€ΠΈΠΊΠΎΠ·Π½Ρ‹ΠΌΠΈ Π³Π°ΡΡ‚Ρ€ΠΎΠ΄ΡƒΠΎΠ΄Π΅Π½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ кровотСчСниями ΠΏΡ€ΠΈ сочСтании с Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ составляСт высокий риск возникновСния Π²Π΅Π½ΠΎΠ·Π½Ρ‹Ρ… Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΠ·ΠΎΠ² ΠΈ эмболии.ΠœΠ΅Ρ‚Π° Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ: дослідити Ρ€ΠΈΠ·ΠΈΠΊ Π’Π’Π• Ρƒ Ρ…Π²ΠΎΡ€ΠΈΡ… Ρ–Π· гострими ΡˆΠ»ΡƒΠ½ΠΊΠΎΠ²ΠΎ-кишковими ΠΊΡ€ΠΎΠ²ΠΎΡ‚Π΅Ρ‡Π°ΠΌΠΈ Π½Π΅Π²Π°Ρ€ΠΈΠΊΠΎΠ·Π½ΠΎΠ³ΠΎ Π³Π΅Π½Π΅Π·Ρƒ.ΠœΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»ΠΈ Ρ– ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π°Π½Π°Π»Ρ–Π· Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ–Π² лікування 246 Ρ…Π²ΠΎΡ€ΠΈΡ… Ρ–Π· гострими ΡˆΠ»ΡƒΠ½ΠΊΠΎΠ²ΠΎ-кишковими ΠΊΡ€ΠΎΠ²ΠΎΡ‚Π΅Ρ‡Π°ΠΌΠΈ Π½Π΅Π²Π°Ρ€ΠΈΠΊΠΎΠ·Π½ΠΎΠ³ΠΎ Π³Π΅Π½Π΅Π·Ρƒ. Усім Ρ…Π²ΠΎΡ€ΠΈΠΌ Π· ΠΌΠ΅Ρ‚ΠΎΡŽ діагностики Π΄ΠΆΠ΅Ρ€Π΅Π»Π° ΠΊΡ€ΠΎΠ²ΠΎΡ‚Π΅Ρ‡Ρ– Π²ΠΈΠΊΠΎΠ½ΡƒΠ²Π°Π»ΠΈ Ρ„Ρ–Π±Ρ€ΠΎΠ³Π°ΡΡ‚Ρ€ΠΎΠ΄ΡƒΠΎΠ΄Π΅Π½ΠΎΡΠΊΠΎΠΏΡ–ΡŽ (Π€Π“Π”Π‘) для ΠΏΠΎΡˆΡƒΠΊΡƒ Π΄ΠΆΠ΅Ρ€Π΅Π»Π° Π³Π΅ΠΌΠΎΡ€Π°Π³Ρ–Ρ— Ρ‚Π° ΠΎΡ†Ρ–Π½ΠΊΠΈ Ρ€ΠΈΠ·ΠΈΠΊΡƒ Ρ—Ρ— Ρ€Π΅Ρ†ΠΈΠ΄ΠΈΠ²Ρƒ Π·Π° ΠΊΠ»Π°ΡΠΈΡ„Ρ–ΠΊΠ°Ρ†Ρ–Ρ”ΡŽ J. Forrest. ВстановлСно, Ρ‰ΠΎ Ρƒ 83,7 % Ρ…Π²ΠΎΡ€ΠΈΡ… Π΄ΠΆΠ΅Ρ€Π΅Π»ΠΎΠΌ Π³Π΅ΠΌΠΎΡ€Π°Π³Ρ–Ρ— Π±ΡƒΠ»Π° ΠΏΠ΅ΠΏΡ‚ΠΈΡ‡Π½Π° Π²ΠΈΡ€Π°Π·ΠΊΠ° дванадцятипалої кишки. ΠšΠΎΠΌΠ±Ρ–Π½ΠΎΠ²Π°Π½ΠΈΠΉ ін’єкційно-коагуляційний гСмостаз застосовували Ρƒ Π²ΠΈΠΏΠ°Π΄ΠΊΠ°Ρ… Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‡ΠΎΡ— Π³Π΅ΠΌΠΎΡ€Π°Π³Ρ–Ρ— Ρ‚Π° стигматах Π½Π΅ΡΡ‚Π°Π±Ρ–Π»ΡŒΠ½ΠΎΠ³ΠΎ гСмостазу – Forrest 1А (2,5 %), Forrest 1Π’ (12,8 %) Ρ‚Π° Forrest 2А (10,3 %), Forrest 2Π’ (19,4 %), Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΎ. ΠŸΠΎΠΌΠ΅Ρ€Π»ΠΈ 10 Ρ…Π²ΠΎΡ€ΠΈΡ… Ρ–Π· Π“Π¨ΠšΠš (загальна Π»Π΅Ρ‚Π°Π»ΡŒΠ½Ρ–ΡΡ‚ΡŒ – 4,1 %), ΠΆΠΎΠ΄Π΅Π½ – Π²Ρ–Π΄ Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‡ΠΎΡ— ΠΊΡ€ΠΎΠ²ΠΎΡ‚Π΅Ρ‡Ρ–. ΠŸΡ€ΠΈΡ‡ΠΈΠ½ΠΎΡŽ Π»Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρƒ Π² усіх Π²ΠΈΠΏΠ°Π΄ΠΊΠ°Ρ… Π²ΠΈΠ·Π½Π°Π½ΠΎ сСрцСво-Π»Π΅Π³Π΅Π½Π΅Π²Ρƒ Π½Π΅Π΄ΠΎΡΡ‚Π°Ρ‚Π½Ρ–ΡΡ‚ΡŒ. Π£ 2 ΠΏΠΎΠΌΠ΅Ρ€Π»ΠΈΡ… ΠΏΡ–Π΄ час автопсії виявлСно ΠΏΡ€ΠΎΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½ΠΈΠΉ Ρ„Π»Π΅Π±ΠΎΡ‚Ρ€ΠΎΠΌΠ±ΠΎΠ·, Ρƒ 4 – Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΠ· Ρ‚Π° Π΅ΠΌΠ±ΠΎΠ»Ρ–ΡŽ сСгмСнтарних Π³Ρ–Π»ΠΎΠΊ Π»Π΅Π³Π΅Π½Π΅Π²ΠΎΡ— Π°Ρ€Ρ‚Π΅Ρ€Ρ–Ρ—. Π‘Ρ‚Π°Π½ систСми гСмостазу ΠΎΡ†Ρ–Π½ΡŽΠ²Π°Π»ΠΈ Π·Π° ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠ°ΠΌΠΈ стандартної ΠΊΠΎΠ°Π³ΡƒΠ»ΠΎΠ³Ρ€Π°ΠΌΠΈ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ Ρ‚Π° Ρ—Ρ… обговорСння. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π΅ дослідТСння Π½Π΅ виявило ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… Π²Ρ–Π΄Ρ…ΠΈΠ»Π΅Π½ΡŒ Ρƒ коагуляційних тСстах Ρƒ 70,3 % Ρ…Π²ΠΎΡ€ΠΈΡ… Π· Π“Π¨ΠšΠš, Π³Ρ–ΠΏΠ΅Ρ€ΠΊΠΎΠ°Π³ΡƒΠ»ΡΡ†Ρ–ΡŽ – Ρƒ 25,3 %, Π³Ρ–ΠΏΠΎΠΊΠΎΠ°Π³ΡƒΠ»ΡΡ†Ρ–ΡŽ – Ρƒ 4,4 % ΠΏΠ°Ρ†Ρ–Ρ”Π½Ρ‚Ρ–Π². ΠŸΡ€ΠΎ ΠΏΡ–Π΄Π²ΠΈΡ‰Π΅Π½ΠΈΠΉ ΠΏΠΎΡ‚Π΅Π½Ρ†Ρ–Π°Π» ΠΊΡ€ΠΎΠ²Ρ– Π΄ΠΎ зсідання свідчили вкорочСння часу зсідання ΠΊΡ€ΠΎΠ²Ρ–, ΠΏΡ€ΠΎΡ‚Ρ€ΠΎΠΌΠ±Ρ–Π½ΠΎΠ²ΠΎΠ³ΠΎ часу, ΠΏΡ–Π΄Π²ΠΈΡ‰Π΅Π½ΠΈΠΉ Ρ€Ρ–Π²Π΅Π½ΡŒ Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Π½ΠΈΡ… комплСксів Ρ„Ρ–Π±Ρ€ΠΈΠ½Ρƒ ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€Ρ–Π² (РКМЀ). Усі Ρ…Π²ΠΎΡ€Ρ– Π½Π° Π“Π¨ΠšΠš, Π² яких констатовано Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ– ΠΎΠ·Π½Π°ΠΊΠΈ гіпСркоагуляції, ΠΌΠ°Π»ΠΈ високий Ρ€ΠΈΠ·ΠΈΠΊ Π’Π’Π• Π·Π° загальновизнаною шкалою J. Caprini. Π€Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ, Ρ‰ΠΎ Π·ΡƒΠΌΠΎΠ²ΠΈΠ»ΠΈ максимальний Ρ€ΠΈΠ·ΠΈΠΊ Π’Π’Π•, Π±ΡƒΠ»ΠΈ: Π»Ρ–ΠΆΠΊΠΎΠ²ΠΈΠΉ Ρ€Π΅ΠΆΠΈΠΌ Π±Ρ–Π»ΡŒΡˆΠ΅ 72 Π³ΠΎΠ΄, Π²Ρ–ΠΊ 61–74 Ρ€ΠΎΠΊΠΈ, Π²Π΅Π½ΠΎΠ·Π½Ρ– Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΠ·ΠΈ Π² Π°Π½Π°ΠΌΠ½Π΅Π·Ρ–, катСтСризація Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΈΡ… Π²Π΅Π½. Π’Π°ΠΊΠΈΠΌ Ρ‡ΠΈΠ½ΠΎΠΌ, гіпСркоагуляція Ρƒ Ρ…Π²ΠΎΡ€ΠΈΡ… Π· гострими Π½Π΅Π²Π°Ρ€ΠΈΠΊΠΎΠ·Π½ΠΈΠΌΠΈ Π³Π°ΡΡ‚Ρ€ΠΎΠ΄ΡƒΠΎΠ΄Π΅Π½Π°Π»ΡŒΠ½ΠΈΠΌΠΈ ΠΊΡ€ΠΎΠ²ΠΎΡ‚Π΅Ρ‡Π°ΠΌΠΈ ΠΏΡ€ΠΈ ΠΏΠΎΡ”Π΄Π½Π°Π½Π½Ρ– Π· Ρ–Π½ΡˆΠΈΠΌΠΈ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ ΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ високий Ρ€ΠΈΠ·ΠΈΠΊ виникнСння Π²Π΅Π½ΠΎΠ·Π½ΠΈΡ… Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΠ·Ρ–Π² Ρ‚Π° Π΅ΠΌΠ±ΠΎΠ»Ρ–ΠΉ

    Nambu-Goldstone Dark Matter and Cosmic Ray Electron and Positron Excess

    Full text link
    We propose a model of dark matter identified with a pseudo-Nambu-Goldstone boson in the dynamical supersymmetry breaking sector in a gauge mediation scenario. The dark matter particles annihilate via a below-threshold narrow resonance into a pair of R-axions each of which subsequently decays into a pair of light leptons. The Breit-Wigner enhancement explains the excess electron and positron fluxes reported in the recent cosmic ray experiments PAMELA, ATIC and PPB-BETS without postulating an overdensity in halo, and the limit on anti-proton flux from PAMELA is naturally evaded.Comment: 3 figure

    ATIC and PAMELA Results on Cosmic e^\pm Excesses and Neutrino Masses

    Get PDF
    Recently the ATIC and PAMELA collaborations released their results which show the abundant e^\pm excess in cosmic rays well above the background, but not for the \bar{p}. Their data if interpreted as the dark matter particles' annihilation imply that the new physics with the dark matter is closely related to the lepton sector. In this paper we study the possible connection of the new physics responsible for the cosmic e^\pm excesses to the neutrino mass generation. We consider a class of models and do the detailed numerical calculations. We find that these models can natually account for the ATIC and PAMELA e^\pm and \bar{p} data and at the same time generate the small neutrino masses.Comment: 7 pages, 5 figures. Published version with minor corrections and more reference

    R-parity preserving super-WIMP decays

    Full text link
    We point out that when the decay of one electroweak scale super-WIMP state to another occurs at second order in a super-weak coupling constant, this can naturally lead to decay lifetimes that are much larger than the age of the Universe, and create observable consequences for the indirect detection of dark matter. We demonstrate this in a supersymmetric model with Dirac neutrinos, where the right-handed scalar neutrinos are the lightest and next-to-lightest supersymmetric partners. We show that this model produces a super-WIMP decay rate scaling as m_nu^4/(weak scale)^3, and may significantly enhance the fraction of energetic electrons and positrons over anti-protons in the decay products. Such a signature is consistent with the observations recently reported by the PAMELA experiment.Comment: 14 pages, v3 JHEP versio

    Dark Matter Model Selection and the ATIC/PPB-BETS anomaly

    Full text link
    We argue that we may be able to sort out dark matter models in which electrons are generated through the annihilation and/or decay of dark matter, by using a fact that the initial energy spectrum is reflected in the cosmic-ray electron flux observed at the Earth even after propagation through the galactic magnetic field. To illustrate our idea we focus on three representative initial spectra: (i)monochromatic (ii)flat and (iii)double-peak ones. We find that those three cases result in significantly different energy spectra, which may be probed by the Fermi satellite in operation or an up-coming cosmic-ray detector such as CALET.Comment: 19 pages, 8 figure

    Scalar Multiplet Dark Matter

    Full text link
    We perform a systematic study of the phenomenology associated to models where the dark matter consists in the neutral component of a scalar SU(2)_L n-uplet, up to n=7. If one includes only the pure gauge induced annihilation cross-sections it is known that such particles provide good dark matter candidates, leading to the observed dark matter relic abundance for a particular value of their mass around the TeV scale. We show that these values actually become ranges of values -which we determine- if one takes into account the annihilations induced by the various scalar couplings appearing in these models. This leads to predictions for both direct and indirect detection signatures as a function of the dark matter mass within these ranges. Both can be largely enhanced by the quartic coupling contributions. We also explain how, if one adds right-handed neutrinos to the scalar doublet case, the results of this analysis allow to have altogether a viable dark matter candidate, successful generation of neutrino masses, and leptogenesis in a particularly minimal way with all new physics at the TeV scale.Comment: 43 pages, 20 figure

    Implications of the Fermi-LAT diffuse gamma-ray measurements on annihilating or decaying Dark Matter

    Full text link
    We analyze the recently published Fermi-LAT diffuse gamma-ray measurements in the context of leptonically annihilating or decaying dark matter (DM) with the aim to explain simultaneously the isotropic diffuse gamma-ray and the PAMELA, Fermi and HESS (PFH) anomalous eΒ±e^\pm data. Five different DM annihilation/decay channels 2e2e, 2ΞΌ2\mu, 2Ο„2\tau, 4e4e, or 4ΞΌ4\mu (the latter two via an intermediate light particle Ο•\phi) are generated with PYTHIA. We calculate both the Galactic and extragalactic prompt and inverse Compton (IC) contributions to the resulting gamma-ray spectra. To find the Galactic IC spectra we use the interstellar radiation field model from the latest release of GALPROP. For the extragalactic signal we show that the amplitude of the prompt gamma-emission is very sensitive to the assumed model for the extragalactic background light. For our Galaxy we use the Einasto, NFW and Isothermal DM density profiles and include the effects of DM substructure assuming a simple subhalo model. Our calculations show that for the annihilating DM the extragalactic gamma-ray signal can dominate only if rather extreme power-law concentration-mass relation C(M)C(M) is used, while more realistic C(M)C(M) relations make the extragalactic component comparable or subdominant to the Galactic signal. For the decaying DM the Galactic signal always exceeds the extragalactic one. In the case of annihilating DM the PFH favored parameters can be ruled out only if power-law C(M)C(M) relation is assumed. For DM decaying into 2ΞΌ2\mu or 4ΞΌ4\mu the PFH favored DM parameters are not in conflict with the Fermi gamma-ray data. We find that, due to the (almost) featureless Galactic IC spectrum and the DM halo substructure, annihilating DM may give a good simultaneous fit to the isotropic diffuse gamma-ray and to the PFH eΒ±e^\pm data without being in clear conflict with the other Fermi-LAT gamma-ray measurements.Comment: Accepted for publication in JCAP, added missing references, new Figs. 9 \& 10, 35 page

    The Leptonic Higgs as a Messenger of Dark Matter

    Full text link
    We propose that the leptonic cosmic ray signals seen by PAMELA and ATIC result from the annihilation or decay of dark matter particles via states of a leptonic Higgs doublet to Ο„\tau leptons, linking cosmic ray signals of dark matter to LHC signals of the Higgs sector. The states of the leptonic Higgs doublet are lighter than about 200 GeV, yielding large Ο„Λ‰Ο„\bar{\tau} \tau and τˉττˉτ\bar{\tau} \tau \bar{\tau} \tau event rates at the LHC. Simple models are given for the dark matter particle and its interactions with the leptonic Higgs, for cosmic ray signals arising from both annihilations and decays in the galactic halo. For the case of annihilations, cosmic photon and neutrino signals are on the verge of discovery.Comment: 34 pages, 9 figures, minor typos corrected, references adde

    Gravitational reheating in quintessential inflation

    Full text link
    We provide a detailed study of gravitational reheating in quintessential inflation generalizing previous analyses only available for the standard case when inflation is followed by an era dominated by the energy density of radiation. Quintessential inflation assumes a common origin for inflation and the dark energy of the Universe. In this scenario reheating can occur through gravitational particle production during the inflation-kination transition. We calculate numerically the amount of the radiation energy density, and determine the temperature Tβˆ—T_* at which radiation starts dominating over kination. The value of Tβˆ—T_* is controlled by the Hubble parameter H0H_0 during inflation and the transition time Ξ”t\Delta t, scaling as H02[ln⁑(1/H0Ξ”t)]3/4H_0^2 [\ln(1/H_0\Delta t)]^{3/4} for H0Ξ”tβ‰ͺ1H_0 \Delta t \ll1 and H02(H0Ξ”t)βˆ’cH_0^2 (H_0 \Delta t)^{-c} for H0Ξ”t≫1H_0\Delta t \gg 1. The model-dependent parameter cc is found to be around 0.5 in two different parametrizations for the transition between inflation and kination.Comment: 12 pages, 5 figure
    corecore