41 research outputs found

    The pragmatic, rapid, and iterative dissemination and implementation (PRIDI) cycle: adapting to the dynamic nature of public health emergencies (and beyond)

    Get PDF
    Background Public health emergencies—such as the 2020 COVID-19 pandemic—accelerate the need for both evidence generation and rapid dissemination and implementation (D&I) of evidence where it is most needed. In this paper, we reflect on how D&I frameworks and methods can be pragmatic (i.e., relevant to real-world context) tools for rapid and iterative planning, implementation, evaluation, and dissemination of evidence to address public health emergencies. The pragmatic, rapid, and iterative D&I (PRIDI) cycle The PRIDI cycle is based on a “double-loop” learning process that recognizes the need for responsiveness and iterative adaptation of implementation cycle (inner loop) to the moving landscapes, presented by the outer loops of emerging goals and desired outcomes, emerging interventions and D&I strategies, evolving evidence, and emerging characteristics and needs of individuals and contexts. Stakeholders iteratively evaluate these surrounding landscapes of implementation, and reconsider implementation plans and activities. Conclusion Even when the health system priority is provision of the best care to the individuals in need, and scientists are focused on development of effective diagnostic and therapeutic technologies, planning for D&I is critical. Without a flexible and adaptive process of D&I, which is responsive to emerging evidence generation cycles, and closely connected to the needs and priorities of stakeholders and target users through engagement and feedback, the interventions to mitigate public health emergencies (e.g., COVID-19 pandemic), and other emerging issues, will have limited reach and impact on populations that would most benefit. The PRIDI cycle is intended to provide a pragmatic approach to support planning for D&I throughout the evidence generation and usage processes

    Teaching for implementation: A framework for building implementation research and practice capacity within the translational science workforce

    Get PDF
    Implementation science offers a compelling value proposition to translational science. As such, many translational science stakeholders are seeking to recruit, teach, and train an implementation science workforce. The type of workforce that will make implementation happen consists of both implementation researchers and practitioners, yet little guidance exists on how to train such a workforce. We-members of the Advancing Dissemination and Implementation Sciences in CTSAs Working Group-present the Teaching For Implementation Framework to address this gap. We describe the differences between implementation researchers and practitioners and demonstrate what and how to teach them individually and in co-learning opportunities. We briefly comment on educational infrastructures and resources that will be helpful in furthering this type of approach

    Understanding and applying the RE-AIM framework: Clarifications and resources

    Get PDF
    Introduction: Understanding, categorizing, and using implementation science theories, models, and frameworks is a complex undertaking. The issues involved are even more challenging given the large number of frameworks and that some of them evolve significantly over time. As a consequence, researchers and practitioners may be unintentionally mischaracterizing frameworks or basing actions and conclusions on outdated versions of a framework. Methods: This paper addresses how the RE-AIM (Reach, Effectiveness, Adoption, Implementation, and Maintenance) framework has been described, summarizes how the model has evolved over time, and identifies and corrects several misconceptions. Results: We address 13 specific areas where misconceptions have been noted concerning the use of RE-AIM and summarize current guidance on these issues. We also discuss key changes to RE-AIM over the past 20 years, including the evolution to Pragmatic Robust Implementation and Sustainability Model, and provide resources for potential users to guide application of the framework. Conclusions: RE-AIM and many other theories and frameworks have evolved, been misunderstood, and sometimes been misapplied. To some degree, this is inevitable, but we conclude by suggesting some actions that reviewers, framework developers, and those selecting or applying frameworks can do to prevent or alleviate these problems.Ye

    Priorities to Promote Participant Engagement in the Participant Engagement and Cancer Genome Sequencing (PE-CGS) Network.

    Get PDF
    BACKGROUND: Engaging diverse populations in cancer genomics research is of critical importance and is a fundamental goal of the NCI Participant Engagement and Cancer Genome Sequencing (PE-CGS) Network. Established as part of the Cancer Moonshot, PE-CGS is a consortium of stakeholders including clinicians, scientists, genetic counselors, and representatives of potential study participants and their communities. Participant engagement is an ongoing, bidirectional, and mutually beneficial interaction between study participants and researchers. PE-CGS sought to set priorities in participant engagement for conducting the network\u27s research. METHODS: PE-CGS deliberatively engaged its stakeholders in the following four-phase process to set the network\u27s research priorities in participant engagement: (i) a brainstorming exercise to elicit potential priorities; (ii) a 2-day virtual meeting to discuss priorities; (iii) recommendations from the PE-CGS External Advisory Panel to refine priorities; and (iv) a virtual meeting to set priorities. RESULTS: Nearly 150 PE-CGS stakeholders engaged in the process. Five priorities were set: (i) tailor education and communication materials for participants throughout the research process; (ii) identify measures of participant engagement; (iii) identify optimal participant engagement strategies; (iv) understand cancer disparities in the context of cancer genomics research; and (v) personalize the return of genomics findings to participants. CONCLUSIONS: PE-CGS is pursuing these priorities to meaningfully engage diverse and underrepresented patients with cancer and posttreatment cancer survivors as participants in cancer genomics research and, subsequently, generate new discoveries. IMPACT: Data from PE-CGS will be shared with the broader scientific community in a manner consistent with participant informed consent and community agreement

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
    corecore