103 research outputs found

    New approaches to the study of human brain networks underlying spatial attention and related processes

    Get PDF
    Cognitive processes, such as spatial attention, are thought to rely on extended networks in the human brain. Both clinical data from lesioned patients and fMRI data acquired when healthy subjects perform particular cognitive tasks typically implicate a wide expanse of potentially contributing areas, rather than just a single brain area. Conversely, evidence from more targeted interventions, such as transcranial magnetic stimulation (TMS) or invasive microstimulation of the brain, or selective study of patients with highly focal brain damage, can sometimes indicate that a single brain area may make a key contribution to a particular cognitive process. But this in turn raises questions about how such a brain area may interface with other interconnected areas within a more extended network to support cognitive processes. Here, we provide a brief overview of new approaches that seek to characterise the causal role of particular brain areas within networks of several interacting areas, by measuring the effects of manipulations for a targeted area on function in remote interconnected areas. In human participants, these approaches include concurrent TMS-fMRI and TMS-EEG, as well as combination of the focal lesion method in selected patients with fMRI and/or EEG measures of the functional impact from the lesion on interconnected intact brain areas. Such approaches shed new light on how frontal cortex and parietal cortex modulate sensory areas in the service of attention and cognition, for the normal and damaged human brai

    Uncoupling Sensation and Perception in Human Time Processing.

    Get PDF
    Timing emerges from a hierarchy of computations ranging from early encoding of physical duration (time sensation) to abstract time representations (time perception) suitable for storage and decisional processes. However, the neural basis of the perceptual experience of time remains elusive. To address this, we dissociate brain activity uniquely related to lower-level sensory and higher-order perceptual timing operations, using event-related fMRI. Participants compared subsecond (500 msec) sinusoidal gratings drifting with constant velocity (standard) against two probe stimuli: (1) control gratings drifting at constant velocity or (2) accelerating gratings, which induced illusory shortening of time. We tested two probe intervals: a 500-msec duration (Short) and a longer duration required for an accelerating probe to be perceived as long as the standard (Long-individually determined). On each trial, participants classified the probe as shorter or longer than the standard. This allowed for comparison of trials with an "Objective" (physical) or "Subjective" (perceived) difference in duration, based on participant classifications. Objective duration revealed responses in bilateral early extrastriate areas, extending to higher visual areas in the fusiform gyrus (at more lenient thresholds). By contrast, Subjective duration was reflected by distributed responses in a cortical/subcortical areas. This comprised the left superior frontal gyrus and the left cerebellum, and a wider set of common timing areas including the BG, parietal cortex, and posterior cingulate cortex. These results suggest two functionally independent timing stages: early extraction of duration information in sensory cortices and Subjective experience of duration in a higher-order cortical-subcortical timing areas

    Distinct causal influences of parietal versus frontal areas on human visual cortex: evidence from concurrent TMS-fMRI

    Get PDF
    It has often been proposed that regions of the human parietal and/or frontal lobe may modulate activity in visual cortex, for example, during selective attention or saccade preparation. However, direct evidence for such causal claims is largely missing in human studies, and it remains unclear to what degree the putative roles of parietal and frontal regions in modulating visual cortex may differ. Here we used transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) concurrently, to show that stimulating right human intraparietal sulcus (IPS, at a site previously implicated in attention) elicits a pattern of activity changes in visual cortex that strongly depends on current visual context. Increased intensity of IPS TMS affected the blood oxygen level–dependent (BOLD) signal in V5/MT+ only when moving stimuli were present to drive this visual region, whereas TMS-elicited BOLD signal changes were observed in areas V1–V4 only during the absence of visual input. These influences of IPS TMS upon remote visual cortex differed significantly from corresponding effects of frontal (eye field) TMS, in terms of how they related to current visual input and their spatial topography for retinotopic areas V1–V4. Our results show directly that parietal and frontal regions can indeed have distinct patterns of causal influence upon functional activity in human visual cortex. Key words: attention, frontal cortex, functional magnetic resonance imaging, parietal cortex, top--down, transcranial magnetic stimulatio

    The role of Dopamine in temporal uncertainty

    Get PDF
    Abstract The temporal preparation of motor responses to external events (temporal preparation) relies on internal representations of the accumulated elapsed time (temporal representations) before an event occurs and on estimates about its most likely time of occurrence (temporal expectations). The precision (inverse of uncertainty) of temporal preparation, however, is limited by two sources of uncertainty. One is intrinsic to the nervous system and scales with the length of elapsed time such that temporal representations are least precise for longest time durations. The other is external and arises from temporal variability of events in the outside world. The precision of temporal expectations thus decreases if events become more variable in time. It has long been recognized that the processing of time durations within the range of hundreds of milliseconds (interval timing) strongly depends on dopaminergic (DA) transmission. The role of DA for the precision of temporal preparation in humans, however, remains unclear. This study therefore directly assesses the role of DA in the precision of temporal preparation of motor responses in healthy humans. In a placebo-controlled double-blind design using a selective D2-receptor antagonist (sulpiride) and D1/D2 receptor antagonist (haloperidol), participants performed a variable foreperiod reaching task, under different conditions of internal and external temporal uncertainty. DA blockade produced a striking impairment in the ability of extracting temporal expectations across trials and on the precision of temporal representations within a trial. Large Weber fractions for interval timing, estimated by fitting subjective hazard functions, confirmed that this effect was driven by an increased uncertainty in the way participants were experiencing time. This provides novel evidence that DA regulates the precision with which we process time when preparing for an action.</jats:p

    Learning from the past and expecting the future in Parkinsonism: Dopaminergic influence on predictions about the timing of future events.

    Get PDF
    The prolonged reaction times seen in Parkinson's disease (PD) have been linked to a dopaminergic-dependent deficit in using prior information to prepare responses, but also have been explained by an altered temporal processing. However, an underlying cognitive mechanism linking dopamine, temporal processing and response preparation remains elusive. To address this, we studied PD patients, with or without medication, and age-matched healthy individuals using a variable foreperiod task requiring speeded responses to a visual stimulus occurring at variable onset-times, with block-wise changes in the temporal predictability of visual stimuli. Compared with controls, unmedicated patients showed impaired use of prior information to prepare their responses, as reflected by slower reaction times, regardless of the level of temporal predictability. Crucially, after dopamine administration normal performance was restored, with faster responses for high temporal predictability. Using Bayesian hierarchical drift-diffusion modelling, we estimated the parameters that determine temporal preparation. In this theoretical framework, impaired temporal preparation under dopaminergic depletion was driven by inflexibly high decision boundaries (i.e. participants were always extremely cautious). This indexes high levels of uncertainty about temporal predictions irrespectively of stimulus onset predictability. Our results suggest that dopaminergic depletion in PD affects the uncertainty of predictions about the timing of future events (temporal predictions), which are crucial for the anticipatory preparation of responses. Dopamine, which is affected in PD, controls the ability to predict the timing of future events

    Reward and punishment enhance motor adaptation in stroke

    Get PDF
    Background and objective: The effects of motor learning, such as motor adaptation, in stroke rehabilitation are often transient, thus mandating approaches that enhance the amount of learning and retention. Previously, we showed in young individuals that reward and punishment feedback have dissociable effects on motor adaptation, with punishment improving adaptation and reward enhancing retention. If these findings were able to generalise to patients with stroke, they would provide a way to optimise motor learning in these patients. Therefore, we tested this in 45 patients with chronic stroke allocated in three groups. / Methods: Patients performed reaching movements with their paretic arm with a robotic manipulandum. After training (day 1), day 2 involved adaptation to a novel force field. During the adaptation phase, patients received performance-based feedback according to the group they were allocated: reward, punishment or no feedback (neutral). On day 3, patients readapted to the force field but all groups now received neutral feedback. / Results: All patients adapted, with reward and punishment groups displaying greater adaptation and readaptation than the neutral group, irrespective of demographic, cognitive or functional differences. Remarkably, the reward and punishment groups adapted to similar degree as healthy controls. Finally, the reward group showed greater retention. / Conclusions: This study provides, for the first time, evidence that reward and punishment can enhance motor adaptation in patients with stroke. Further research on reinforcement-based motor learning regimes is warranted to translate these promising results into clinical practice and improve motor rehabilitation outcomes in patients with stroke

    Studying the Role of Human Parietal Cortex in Visuospatial Attention with Concurrent TMS-fMRI

    Get PDF
    Combining transcranial magnetic stimulation (TMS) with concurrent functional magnetic resonance imaging (fMRI) allows study of how local brain stimulation may causally affect activity in remote brain regions. Here, we applied bursts of high- or low-intensity TMS over right posterior parietal cortex, during a task requiring sustained covert visuospatial attention to either the left or right hemifield, or in a neutral control condition, while recording blood oxygenation-level-dependent signal with a posterior MR surface coil. As expected, the active attention conditions activated components of the well-described "attention network,” as compared with the neutral baseline. Also as expected, when comparing left minus right attention, or vice versa, contralateral occipital visual cortex was activated. The critical new finding was that the impact of high- minus low-intensity parietal TMS upon these visual regions depended on the currently attended side. High- minus low-intensity parietal TMS increased the difference between contralateral versus ipsilateral attention in right extrastriate visual cortex. A related albeit less pronounced pattern was found for left extrastriate visual cortex. Our results confirm that right human parietal cortex can exert attention-dependent influences on occipital visual cortex and provide a proof of concept for the use of concurrent TMS-fMRI in studying how remote influences can vary in a purely top-down manner with attentional demand

    Hemispheric differences in frontal and parietal influences on human occipital cortex: direct confirmation with concurrent TMS-fMRI

    Full text link
    We used concurrent TMS-fMRI to test directly for hemispheric differences in causal influences of the right or left fronto-parietal cortex on activity (BOLD signal) in the human occipital cortex. Clinical data and some behavioral TMS studies have been taken to suggest right-hemisphere specialization for top-down modulation of vision in humans, based on deficits such as spatial neglect or extinction in lesioned patients, or findings that TMS to right (vs. left) fronto-parietal structures can elicit stronger effects on visual performance. But prior to the recent advent of concurrent TMS and neuroimaging, it was not possible to directly examine the causal impact of one (stimulated) brain region upon others in humans. Here we stimulated the frontal or intraparietal cortex in the left or right hemisphere with TMS, inside an MR scanner, while measuring with fMRI any resulting BOLD signal changes in visual areas V1-V4 and V5/MT+. For both frontal and parietal stimulation, we found clear differences between effects of right- versus left-hemisphere TMS on activity in the visual cortex, with all differences significant in direct statistical comparisons. Frontal TMS over either hemisphere elicited similar BOLD decreases for central visual field representations in V1-V4, but only right frontal TMS led to BOLD increases for peripheral field representations in these regions. Hemispheric differences for effects of parietal TMS were even more marked: Right parietal TMS led to strong BOLD changes in V1-V4 and V5/MT+, but left parietal TMS did not. These data directly confirm that the human frontal and parietal cortex show right-hemisphere specialization for causal influences on the visual cortex
    corecore