14 research outputs found

    Finding Person Relations in Image Data of the Internet Archive

    Full text link
    The multimedia content in the World Wide Web is rapidly growing and contains valuable information for many applications in different domains. For this reason, the Internet Archive initiative has been gathering billions of time-versioned web pages since the mid-nineties. However, the huge amount of data is rarely labeled with appropriate metadata and automatic approaches are required to enable semantic search. Normally, the textual content of the Internet Archive is used to extract entities and their possible relations across domains such as politics and entertainment, whereas image and video content is usually neglected. In this paper, we introduce a system for person recognition in image content of web news stored in the Internet Archive. Thus, the system complements entity recognition in text and allows researchers and analysts to track media coverage and relations of persons more precisely. Based on a deep learning face recognition approach, we suggest a system that automatically detects persons of interest and gathers sample material, which is subsequently used to identify them in the image data of the Internet Archive. We evaluate the performance of the face recognition system on an appropriate standard benchmark dataset and demonstrate the feasibility of the approach with two use cases

    GridFace: Face Rectification via Learning Local Homography Transformations

    Full text link
    In this paper, we propose a method, called GridFace, to reduce facial geometric variations and improve the recognition performance. Our method rectifies the face by local homography transformations, which are estimated by a face rectification network. To encourage the image generation with canonical views, we apply a regularization based on the natural face distribution. We learn the rectification network and recognition network in an end-to-end manner. Extensive experiments show our method greatly reduces geometric variations, and gains significant improvements in unconstrained face recognition scenarios.Comment: To appear in ECCV 201

    Low-Resolution Face Recognition

    Get PDF
    Whilst recent face-recognition (FR) techniques have made significant progress on recognising constrained high-resolution web images, the same cannot be said on natively unconstrained low-resolution images at large scales. In this work, we examine systematically this under-studied FR problem, and introduce a novel Complement Super-Resolution and Identity (CSRI) joint deep learning method with a unified end-to-end network architecture. We further construct a new large-scale dataset TinyFace of native unconstrained low-resolution face images from selected public datasets, because none benchmark of this nature exists in the literature. With extensive experiments we show there is a significant gap between the reported FR performances on popular benchmarks and the results on TinyFace, and the advantages of the proposed CSRI over a variety of state-of-the-art FR and super-resolution deep models on solving this largely ignored FR scenario. The TinyFace dataset is released publicly at: https://qmul-tinyface.github.io/.Comment: Accepted by 14th Asian Conference on Computer Visio

    Face recognition: challenges, achievements and future directions

    No full text
    Face recognition has received significant attention because of its numerous applications in access control, law enforcement, security, surveillance, Internet communication and computer entertainment. Although significant progress has been made, the state‐of‐the‐art face recognition systems yield satisfactory performance only under controlled scenarios and they degrade significantly when confronted with real‐world scenarios. The real‐world scenarios have unconstrained conditions such as illumination and pose variations, occlusion and expressions. Thus, there remain plenty of challenges and opportunities ahead. Latterly, some researchers have begun to examine face recognition under unconstrained conditions. Instead of providing a detailed experimental evaluation, which has been already presented in the referenced works, this study serves more as a guide for readers. Thus, the goal of this study is to discuss the significant challenges involved in the adaptation of existing face recognition algorithms to build successful systems that can be employed in the real world. Then, it discusses what has been achieved so far, focusing specifically on the most successful algorithms, and overviews the successes and failures of these algorithms to the subject. It also proposes several possible future directions for face recognition. Thus, it will be a good starting point for research projects on face recognition as useful techniques can be isolated and past errors can be avoided
    corecore