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Abstract. Whilst recent face-recognition (FR) techniques have made
significant progress on recognising constrained high-resolution web im-
ages, the same cannot be said on natively unconstrained low-resolution
images at large scales. In this work, we examine systematically this
under-studied FR problem, and introduce a novel Complement Super-
Resolution and Identity (CSRI) joint deep learning method with a unified
end-to-end network architecture. We further construct a new large-scale
dataset TinyFace of native unconstrained low-resolution face images from
selected public datasets, because none benchmark of this nature exists in
the literature. With extensive experiments we show there is a significant
gap between the reported FR performances on popular benchmarks and
the results on TinyFace, and the advantages of the proposed CSRI over a
variety of state-of-the-art FR and super-resolution deep models on solv-
ing this largely ignored FR scenario. The TinyFace dataset is released
publicly at: https://gqmul-tinyface.github.io/.
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1 Introduction

Face recognition (FR) models have made significant progress on constrained
good-quality images, with reported 99.63% accuracy (1:1 verification) on the
LFW benchmark [20] and 99.087% rank-1 rate (1:N identification with 1,000,000
distractors in the gallery) on the MegaFace challenge [22]. Surprisingly, in this
work we show systematically that FR remains a significant challenge on natively
unconstrained low-resolution (LR) images — not artificially down-sampled from
high-resolution (HR) images, as typically captured in surveillance videos [9,47)
and unconstrained (unposed) snapshots from a wide field of view at distance
[46,44]. In particular, when tested against native low-resolution face images from
a newly constructed tiny face dataset, we reveal that the performances of current
state-of-the-art deep learning FR models degrade significantly. This is because
the LR facial imagery lack sufficient visual information for current deep models
to learn expressive feature representations, as compared to HR, good quality
photo images under constrained (posed) viewing conditions (Fig. 1).
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TinyFace

Fig.1. Examples of (Left) constrained high-resolution web face images from
five popular benchmarking FR datasets, and (Right) native unconstrained low-
resolution web face images captured in typical natural scenes.

In general, unconstrained low-resolution FR (LRFR) is severely under-studied
versus many FR models tested on popular benchmarks of HR images, mostly
captured either under constrained viewing conditions or from “posed” photo-
shoots including passport photo verification for airport immigration control and
identity check in e-banking. Another obstacle for enabling more studies on LRFR
is the lack of large scale native LR face image data both for model training and
testing, rather than artificially down-sampled synthetic data from HR images.
To collect sufficient data for deep learning, it requires to process a large amount
of public domain (e.g. from the web) video and image data generated from a
wide range of sources such as social-media, e.g. the MegaFace dataset [22,28].
So far, this has only been available for HR and good quality (constrained) web
face images, e.g. widely distributed celebrity images [20,30,27].

In this work, we investigate the largely neglected and practically significant
LRFR problem. We make three contributions:

1. We propose a novel Super-Resolution and Identity joint learning approach
to face recognition in native LR images, with a unified deep network archi-
tecture. Unlike most existing FR methods assuming constrained HR facial
images in model training and test, the proposed approach is specially de-
signed to improve the model generalisation for LRFR tasks by enhancing the
compatibility of face enhancement and recognition. Compared to directly ap-
plying super-resolution algorithms to improve image details without jointly
optimising for face discrimination, our method has been shown to be effective
in reducing the negative effect of noisy fidelity for the LRFR task (Table 5).

2. We introduce a Complement Super-Resolution learning mechanism to over-
come the inherent challenge of native LRFR concerning with the absence
of HR facial images coupled with native LR faces, typically required for
optimising image super-resolution models. This is realised by transferring
the super-resolving knowledge from good-quality HR web images to the na-
tively LR facial data subject to the face identity label constraints of native
LR faces in every mini-batch training. Taken together with joint learning,
we formulate a Complement Super-Resolution and Identity joint learning
(CSRI) method.
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3. We further create a large scale face recognition benchmark, named TinyFace,
to facilitate the investigation of natively LRFR at large scales (large gallery
population sizes) in deep learning. The TinyFace dataset consists of 5,139
labelled facial identities given by 169,403 native LR face images (average
20x16 pixels) designed for 1:N recognition test. All the LR faces in Tiny-
Face are collected from public web data across a large variety of imaging
scenarios, captured under uncontrolled viewing conditions in pose, illumina-
tion, occlusion and background. Beyond artificially down-sampling HR facial
images for LRFR performance test as in previous works, to our best knowl-
edge, this is the first systematic study focusing specially on face recognition
of native LR web images.

In the experiments, we benchmark the performance of four state-of-the-
art deep learning FR models [30,26,36,42] and three super-resolution methods
[11,37,23] on the TinyFace dataset. We observe that the existing deep learning
FR models suffer from significant performance degradation when evaluated on
the TinyFace challenge. The results also show the superiority of the proposed
CSRI model over the state-of-the-art methods on the LRFR tasks.

2 Related Work

Face Recognition. FR has achieved significant progress from hand-crafted fea-
ture based methods [1,4,8] to deep learning models [22,24,26,30,42]. One main
driving force behind recent advances is the availability of large sized FR bench-
marks and datasets. Earlier FR benchmarks are small, consisting of a limited
number of identities and images [4,13,14,31,33,35]. Since 2007, the Labeled Faces
in the Wild (LFW) [20] has shifted the FR community towards recognising more
unconstrained celebrity faces at larger scales. Since then, a number of large FR
training datasets and test evaluation benchmarks have been introduced, such
as VGGFace [30], CASIA [45], CelebA [27], MS-Celeb-1M [16], MegaFace [22],
and MegaFace2 [28]. Benefiting from large scale training data and deep learning
techniques, the best FR model has achieved 99.087% on the current largest 1:N
face identification evaluation (with 1,000,000 distractors) MegaFace?.

Despite a great stride in FR on the HR web images, little attention has
been paid to native LR face images. We found that state-of-the-art deep FR
models trained on HR constrained face images do not generalise well to natively
unconstrained LR face images (Table 3), but only generalise much better to
synthetic LR data (Table 4). In this study, a newly created TinyFace benchmark
provides for the first time a large scale native LRFR test for validating current
deep learning FR models. TinyFace images were captured from real-world web
social-media data. This complements the QMUL-SurvFace benchmark that is
characterised by poor quality surveillance facial imagery captured from real-life
security cameras deployed at open public spaces [9].

% http://megaface.cs.washington.edu/results/facescrub.html
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Low-Resolution Face Recognition. Existing LRFR methods can be sum-
marised into two approaches: (1) Image super-resolution [12,15,18,41,48], and (2)
resolution-invariant learning [2,6,10,17,25,34]. The first approach exploits two
model optimisation criteria in model formulation: Pixel-level visual fidelity and
face identity discrimination [15,41,48,40]. The second approach instead aims to
learn resolution-invariant features [2,10,25] or learning a cross-resolution struc-
ture transformation [17,34,32,43]. All the existing LRFR methods share a num-
ber of limitations: (a) Considering only small gallery search pools (small scale)
and/or artificially down-sampled LR face images; (b) Mostly relying on either
hand-crafted features or without end-to-end model optimisation in deep learning;
(c) Assuming the availability of labelled LR/HR image pairs for model training,
which is unavailable in practice with native LR face imagery.

In terms of LRFR deployment, two typical settings exist. One is LR-to-HR
which matches LR probe faces against HR gallery images such as passport pho-
tos [6,34,7,32]. The other is LR-to-LR where both probe and gallery are LR facial
images [40,15,12,48,41]. Generally, LR-to-LR is a less stringent deployment sce-
nario. This is because, real-world imagery data often contain a very large number
of “joe public” without HR gallery images enrolled in the FR system. Besides,
the two settings share the same challenge of how to synthesise discriminative
facial appearance features missing in the original LR input data — one of the
key challenges involved in solving the LRFR problem. The introduced TinyFace
benchmark adopts the more general LR-to-LR setting.

Image Super-Recognition. Besides, image super-resolution (SR) deep learn-
ing techniques [23,11,37] have been significantly developed which may be benefi-
cial for LRFR. At large, FR and SR studies advance independently. We discov-
ered through our experiments that contemporary SR deep learning models bring
about very marginal FR performance benefit on native LR unconstrained im-
ages, even after trained on large HR web face imagery. To address this problem,
we design a novel deep neural network CSRI to improve the FR performance on
unconstrained native LR face images.

3 Complement-Super-Resolution and Identity Joint Learning

For native LRFR, we need to extract identity discriminative feature represen-
tations from LR unconstrained images. To that end, we propose a deep neu-
ral network architecture for Complement-Super-Resolution and Identity
(CSRI) joint learning. This approach is based on two considerations: (1) Joint
learning of Super-Resolution (SR) and FR for maximising their compatibility
and complementary advantages; (2) Complement-Super-Resolution learning for
maximising the model discrimination on native LR face data at the absence of
native HR counterparts in further SR-FR joint learning.

One major challenge in native LRFR is that we have no coupled HR images
which are required for optimising the SR component. To address this problem,
we consider knowledge transfer from auxiliary HR face data on which LR/HR
pairs can be constructed by down-sampling.
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Fig. 2. Overview of the proposed Complement-Super-Resolution and Identity (CSRI)
joint learning architecture. The CSRI contains two branches: (Orange): Synthetic LR
SR-FR branch; (Blue): Native LR SR-FR branch. The two branches share parameters.

CSRI Overview. Given the CSRI design above, we consider a multi-branch
network architecture (Fig. 2). The CSRI contains two branches:

1. A synthetic LR SR-FR branch: For improving the compatibility and comple-
mentary advantages of SR and FR components by jointly learning auxiliary
face data with artificially down-sampled LR/HR pairs (the top stream in
Fig. 2);

2. A native LR SR-FR branch: For adapting super-resolving information of
auxiliary LR/HR face pairs to the native LR facial imagery domain which
lacks the corresponding HR faces by complement SR-FR learning (the bot-
tom stream in Fig. 2).

In this study, we instantiate the CSRI by adopting the VDSR [23] for the
SR component and the CentreFace [42] for the FR component. We detail these
CSRI components as follows.

(I) Joint Learning of Super-Resolution and Face Recognition. To adapt
the image SR ability for LRFR, we consider a SR-FR joint learning strategy by
integrating the output of SR with the input of FR in the CSRI design so to
exploit the intrinsic end-to-end deep learning advantage. To train this SR-FR
joint network, we use both auxiliary training data with artificially down-sampled
LR/HR face pairs {(I?", I*'")} and face identity labels {y} (e.g. CelebA [27]).
Formally, a SR model represents a non-linear mapping function between LR
and HR face images. For SR component optimisation, we utilise the pixel-level
Mean-Squared Error (MSE) minimisation criterion defined as

Lo = |11 = 17 )

where I*" denotes the super-resolved face image of I*" (Fig. 2(a)), and I?*I*
denotes the corresponding HR ground-truth image (Fig. 2(c)).
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Using the MSE loss intrinsically favours the Peak Signal-to-Noise Ratio
(PSNR) measurement, rather than the desired LRFR performance. We address
this limitation by concurrently imposing the FR criterion in optimising SR.
Formally, we quantify the performance of the FR component by the softmax
Cross-Entropy loss function defined as:

L™ = —log(py) (2)

where y is the face identity, and p, the prediction probability on class y by the
FR component. The SR-FR joint learning objective is then formulated as:

Lor-tr = E;}/n + Ase Lor (3)

where A, is a weighting parameter for the SR loss quantity. We set s, =0.003
by cross-validation in our experiments. In doing so, the FR criterion enforces the
SR learning to be identity discriminative simultaneously.

(II) Complement-Super-Resolution Learning. Given the SR-FR joint
learning as above, the CSRI model learns to optimise the FR performance on
the synthetic (artificially down-sampled) auxiliary LR face data. This model is
likely to be sub-optimal for native LRFR due to the inherent visual appearance
distribution discrepancy between synthetic and native LR face images (Fig. 6).

To overcome this limitation, we further constrain the SR-FR, joint learning
towards the native LR data by imposing the native LR face discrimination con-
straint into the SR component optimisation. Specifically, we jointly optimise the
SR and FR components using both auxiliary (with LR/HR pairwise images)
and native (with only LR images) training data for adapting the SR component
learning towards native LR data. That is, we concurrently optimise the synthetic
and native LR branches with the parameters shared in both SR and FR com-
ponents. To enforce the discrimination of labelled native LR faces, we use the
same Cross-Entropy loss formulation.

Overall Loss Function. After combining three complement SR-FR learning
loss quantities, we obtain the final CSRI model objective as:

Lot = (L™ 4+ LE) + A Lor (4)

where £3** and £3" measure the identity discrimination constraints on the

native and synthetic LR training data, respectively. With such a joint multi-
task (FR and SR) formulation, the SR optimisation is specifically guided to be
more discriminative for the native LR facial imagery data.

Model Training and Deployment. The CSRI can be trained by the standard
Stochastic Gradient Descent algorithm in an end-to-end manner. As the auxiliary
and native LR data sets are highly imbalanced in size, we further propose to
train the CSRI in two steps for improving the model convergence stability: (1)
We first pre-train the synthetic LR SR-FR branch on a large auxiliary face data
(CelebA [27]). (2) We then train the whole CSRI network on both auxiliary and
native LR data.

In deployment, we utilise the native LR SR-FR branch to extract the feature
vectors for face image matching with the Euclidean distance metric.
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Fig. 3. Example TinyFace images auto-detected in unconstrained images.

4 TinyFace: Low-Resolution Face Recognition Benchmark

4.1 Dataset Construction

Low-Resolution Criterion. To create a native LR face dataset, we need an
explicit LR criterion. As there is no existing standard in the literature, in this
study we define LR faces as those <32x32 pixels by following the tiny object
criterion [38]. Existing FR datasets are all >100x100 pixels (Table 1).

Face Image Collection. The TinyFace dataset contains two parts, face im-
ages with labelled and unlabelled identities. The labelled TinyFace images were
collected from the publicly available PIPA [46] and MegaFace2 [28] datasets,
both of which provide unconstrained social-media web face images with large
variety in facial expression/pose and imaging conditions. For the TinyFace to be
realistic for LRFR test, we applied the state-of-the-art HR-ResNet101 model [19]
for automatic face detection, rather than human cropping. Given the detection
results, we removed those faces with spatial extent larger than 32x32 to ensure
that all selected faces are of LR.

Face Image Filtering. To make a valid benchmark, it is necessary to remove
the false face detections. We verified exhaustively every detection, which took
approx. 280 person-hours, i.e. one labeller needs to manually verify detected tiny
face images 8 hours/day consistently for a total of 35 days. Utilising multiple
labellers introduces additional tasks of extra consistency checking across all the
verified data by different labellers. After manual verification, all the remaining
PIPA face images were then labelled using the identity classes available in the
original data. As a result, we assembled 15,975 LR face images with 5,139 distinct
identity labels, and 153,428 LR faces without identity labels. In total, we obtained
169,403 images of labelled and unlabelled faces. Fig. 3 shows some examples
randomly selected from TinyFace.
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Fig. 4. Distribution of face image height in TinyFace.

Face Image Statistics. Table 1 summarises the face image statistics of Tiny-
Face in comparison to 9 existing FR benchmarks. Fig. 4 shows the distribution
of TinyFace height resolution, ranging from 6 to 32 pixels with the average at
20. In comparison, existing benchmarks contain face images of >100 in average
height, a >5x higher resolution.

Benchmark [ Mean Height [ # Identity [ # Image
LFW [20] 119 5,749 13,233
VGGFace [30] 138 2,622 2.6M
MegaFace [22] 352 530 1M
CASIA [45] 153 10,575 494,414
IJB-A [24] 307 500 5,712
CelebA [27] 212 10,177 202,599
UMDFaces [3] >100 8,277 367,388
MS-Celeb-1M [16] >100 99,892 8,456,240
MegaFace2 [28] 252 672,057 4,753,320
TinyFace (Ours) | 20 [ 5,139 169,403

Table 1. Statistics of popular FR benchmarks.

- Test Set
Data All Training Set Probe [ Gallery Match [ Gallery Distractor
# Identity 5,139 2,570 2,569 2,569 Unknown
# Image 169,403 7,804 3,728 4,443 153,428

Table 2. Data partition and statistics of TinyFace.

4.2 Evaluation Protocol

Data Split. To establish an evaluation protocol on the TinyFace dataset, it
is necessary to first define the training and test data partition. Given that both
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training and test data require labels with the former for model training and the
latter for performance evaluation, we divided the 5,139 known identities into
two halves: one (2,570) for training, the other (2,569) for test. All the unlabelled
distractor face images are also used as test data (Table 2).

Face Recognition Task. In order to compare model performances on the
MegaFace benchmark [28], we adopt the same face identification (1:N matching)
protocol as the FR task for the TinyFace. Specifically, the task is to match a
given probe face against a gallery set of enrolled face imagery with the best result
being that the gallery image of a true-match is ranked at top-1 of the ranking
list. For this protocol, we construct a probe and a gallery set from the test data
as follows: (1) For each test face class of multiple identity labelled images, we
randomly assigned half of the face images to the probe set, and the remaining
to the gallery set. (2) We placed all the unlabelled disctractor images (with
unknown identity) into the gallery set for enlarging the search space therefore
presenting a more challenging task, similar to MegaFace [28]. The image and
identity statistics of the probe and gallery sets are summarised in Table 2.

Performance Metrics. For FR performance evaluation, we adopt three met-
rics: the Cumulative Matching Characteristic (CMC) curve [24], the Precision-
Recall (PR) curve [39], and mean Average Precision (mAP). Whilst CMC mea-
sures the proportion of test probes with the true match at rank k or better, PR
quantifies a trade-off between precision and recall per probe with the aim to
find all true matches in the gallery [21]. To summarise the overall performance,
we adopt the mean Average Precision (mAP), i.e. the mean value of average
precision of all per-probe PR curves.

4.3 Training vs Testing Data Size Comparison

To our knowledge, TinyFace is the largest native LR web face recognition bench-
mark (Table 1). It is a challenging test due to very LR face images (5% less than
other benchmarks) with large variations in illumination, facial pose/expression,
and background clutters. These factors represent more realistic real-world low-
resolution face images for model robustness and effectiveness test.

In terms of training data size, TinyFace is smaller than some existing HR
FR model training datasets, notably the MegaFace2 of 672,057 IDs. It is much
more difficult to collect natively LR face images with label information. Unlike
celebrities, there are much less facial images of known identity labels from the
general public available for model training.

In terms of testing data size, on the other hand, the face identification test
evaluation offered by the current largest benchmark MegaFace [22] contains only
530 test face IDs (from FaceScrub [29]) and 1 million gallery images, whilst Tiny-
Face benchmark consists of 2,569 test IDs and 154,471 gallery images. Moreover,
in comparison to LF'W benchmark there are 5,749 face IDs in the LFW designed
originally for 1:1 verification test [20], however a much smaller gallery set of 596
face IDs of LFW were adopted for 1:N matching test (open-set) with 10,090
probe images of which 596 true-matches (1-shot per ID) and 9,494 distractors
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[5]. Overall, TinyFace for 1:N test data has 3~4x more test IDs than MegaFace
and LFW, and 15x more distractors than LFW 1:N test data.

5 Experiments

In this section, we presented experimental analysis on TinyFace, the only large
scale native LRFR benchmark, by three sets of evaluations: (1) Evaluation of
generic FR methods without considering the LR challenge. We adopted the state-
of-the-art deep learning FR methods (Sec. 5.1); (2) Evaluation of LRFR meth-
ods. For this test, we applied super-resolution deep learning techniques in addi-
tion to the deep learning FR models (Sec. 5.2); (3) Component analysis of the
proposed CSRI method (Sec. 5.3).

(a)

1
FR model: SR model: ! FRmodel:
1
CelebA i
CelebA .4 TinyFace g4 TinyF: i 1 SR-resolved BN SR-resolved

- (1) Train H CelebA TinyFace TinyFace
- i i — 1

(1) Pre-train (2) Fine-tune (3) Test : W | (1) Pre-train (2) Fine-tune (3) Test
TinyFace TinyFace W

Fig. 5. Overview of training (a) generic FR models and (b) low-resolution FR models
(Independent training of Super-Resulotion (SR) and FR models).

5.1 Evaluation of Generic Face Resolution Methods

Metric (%) [ Rank-1 | Rank-20 | Rank-50 | mAP
DeepID2 [36] 17.4 25.2 28.3 12.1
SphereFace [26] 22.3 35.5 40.5 16.2
VggFace [30] 30.4 40.4 42.7 23.1
CentreFace [42] 32.1 44.5 48.4 24.6

Table 3. Generic FR evaluation on TinyFace (Native LR face images).

In this test, we evaluated four representative deep FR models including
DeepID2 [36], VggFace [30], CentreFace [42] and SphereFace [26]. For model
optimisation, we first trained a given FR model on the CelebA face data [27]
before fine-tuning on the TinyFace training set* (see Fig. 5(a)). We adopted the
parameter settings suggested by the original authors.

Results. Table 3 shows that the FR performance by any model is significantly
inferior on TinyFace than on existing high-resolution FR benchmarks. For ex-
ample, the best performer CentreFace yields Rank-1 32.1% on TinyFace versus

4 The SphereFace method fails to converge in fine-tuning on TinyFace even with careful
parameter selection. We hence deployed the CelebA-trained SphereFace model.
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65.2% on MegaFace [22], i.e. more than half performance drop. This suggests
that the FR problem is more challenging on natively unconstrained LR images.

FR Model H Dataset H Rank-1 ‘ Rank-20 ‘ Rank-50 H mAP
TinyFace 30.4 40.4 427 231

VegFace [30] SynLR-MF2 34.8 46.8 49.4 26.0
TinyFace 32.1 445 484 24.6

CentreFace [42] || o 1R Mr2 39.2 63.4 70.2 31.4

Table 4. Native (TinyFace) vs. synthetic (SynLR-MF2) LR face recognition.

Native vs Synthetic LR Face Images. For more in-depth understanding
on native LRFR, we further compared with the FR performance on synthetic
LR face images. For this purpose, we created a synthetic LR face dataset, which
we call SynLR-MF2, using 169,403 HR MegaFace2 images [28]. Following the
data distribution of TinyFace (Table 2), we randomly selected 15,975 images
from 5,139 IDs as the labelled test images and further randomly selected 153,428
images from the remaining IDs as the unlabelled distractors. We down-sampled
all selected MegaFace2 images to the average size (20x16) of TinyFace images.
To enable a like-for-like comparison, we made a random data partition on SynLR-
MF?2 same as TinyFace (see Table 2).

Table 4 shows that FR on synthetic LR face images is a less challenging
task than that of native LR images, with a Rank-20 model performance advan-
tage of 6.4% (46.8-40.4) by VggFace and 18.9% (63.4-44.5) by CentreFace. This
difference is also visually indicated in the comparison of native and synthetic
LR face images in a variety of illumination/pose and imaging quality (Fig. 6).
This demonstrates the importance of TinyFace as a native LRFR benchmark for
testing more realistic real-world FR model performances.

i T,
oo

Fig. 6. Comparison of (left) native LR face images from TinyFace and (right) synthetic
LR face image from SynLR-MF2.

5.2 Evaluation of Low-Resolution Face Resolution Methods

In this evaluation, we explored the potential of contemporary super-resolution
(SR) methods in addressing the LRFR challenge. To compare with the proposed
CSRI model, we selected three representative deep learning generic-image SR
models (SRCNN [11], VDSR [23] and DRRN [37]), and one LRFR deep model
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FR | Method [ Rank-1  Rank-20  Rank-50 | mAP
g No 32.1 44.5 48.4 24.6
= SRCNN [11] 288 38.6 423 21.7
£ | SR | VDSR [23] 26.0 34.5 37.7 19.1
& DRRN [37] 29.4 39.4 43.0 22.2
2 No 30.4 40.4 42.7 23.1
s SRCNN [11] 29.6 39.2 414 22.7
% | SR | VDSR [23] 28.8 38.3 40.3 22.1
> DRRN [37] 20.4 39.8 41.9 92.4

RPCN [41] [ 186 25.3 274 [ 129
CSRI (Ours) [ 448 60.4 65.1 | 36.2

Table 5. Native Low-Resolution FR evaluation on TinyFace.

70 ——DeeplID2
§ 60 ——SphereFace
B’ VggFace
+ 90 CentreFace
o CentreFace-SRCNN
S 0 /7:_’_" CentreFace-VDSR
"é 30 CentreFace-DRRN
o / VggFace-SRCNN
£ o /”c VggFace-VDSR
S ——VggFace-DRRN
S 10 —RPCN

10 20 30 40 50 |—CsRI(Ours)

Rank

Fig. 7. Performance comparison of different methods in CMC curves on the TinyFace
dataset.

RPCN [41] (also using SR). We trained these SR models on the CelebA im-
ages [27] (202,599 LR/HR face pairs from 10,177 identities) with the authors
suggested parameter settings for maximising their performance in the FR task
(see Fig. 5(b)). We adopted the CentreFace and VggFace (top-2 FR models, see
Table 3) for performing FR model training and test on super-resolved faces gen-
erated by any SR model. Since the RPCN integrates SR with FR in design, we
used both CelebA and TinyFace data to train the RPCN for a fair comparison.

Results. Table 5 Fig. 7 show that: (1) All SR methods degrade the performance
of a deep learning FR model. The possible explanation is that the artifacts and
noise introduced in super-resolution are likely to hurt the FR model generali-
sation (see Fig. 8). This suggests that applying SR as a separate process in a
simplistic approach to enhancing LRFR not only does not offer any benefit, but
also is more likely a hindrance. (2) The RPCN yields the worst performance al-
though it was specially designed for LR face recognition. The possible reason is
two-fold: (a) This method exploits the SR as model pre-training by design, which
leads to insufficient FR supervision in the ID label guided model fine-tuning. (b)
Adopting a weaker base network with 3 conv layers. These results suggest that
existing methods are ineffective for face recognition on natively low-resolution
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Fig. 8. Examples of super-resolved faces.

images and when the test gallery population size becomes rather large. (3) The
CSRI outperforms significantly all the competitors, e.g. the Rank-1 recognition
performance gain by CSRI over CentreFace is significant at 12.7% (44.8-32.1).
This shows the advantage of the CSRI model design in enabling FR on natively
LR face images over existing generic FR models.

5.3 Component Analysis of CSRI

To better understand the CSRI’s performance advantage, we evaluated the in-
dividual model components on the TinyFace benchmark by incrementally intro-
ducing individual components of the CSRI model.

SR-FR joint learning was examined in comparison to SR-FR independent
learning (same as in Sec. 5.2). For fair comparison, we used the VDSR [23]
and CentreFace [42] which are adopted the components of CSRI. For SR-FR
joint learning, we first trained the CSRI synthetic LR SR-FR branch on the
CelebA data, followed by fine-tuning the FR part on TinyFace training data.
Table 6 shows that SR-FR joint learning has a Rank-1 advantage of 10.1%
(36.1-26.0) and 4.0% (36.1-32.1) over SR-FR independent learning and FR only
(i.e. CentreFace in Table 3), respectively. This suggests the clear benefit of SR-
FR joint learning due to the enhanced compatibility of SR and FR components
obtained by end-to-end concurrent optimisation.

Complement SR learning was evaluated by comparing the full CSRI with the
above SR-FR joint learning. Table 7 shows a Rank-1 boost of 8.7% (44.8-36.1),
another significant benefit from the complement SR learning.
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SR-FR [ Rank-1 Rank-20 | Rank-50 [ mAP
Independent Learning 26.0 34.5 37.7 19.1
Joint Learning 36.1 49.8 54.5 28.2

Table 6. Joint vs. independent learning of super-resolution and face recognition.

CSR “ Rank-1 [ Rank-20 [ Rank-50 “ mAP
X 36.1 49.8 54.5 28.2
v 44.8 60.4 65.1 36.2

Table 7. Effect of complement super-resolution (CSR) learning.

6 Conclusions

In this work, we presented for the first time a large scale native low-resolution
face recognition (LRFR) study. This is realised by joint learning of Complement
Super-Resolution and face Identity (CSRI) in an end-to-end trainable neural
network architecture. By design, the proposed method differs significantly from
most existing FR methods that assume high-resolution good quality facial im-
agery in both model training and testing, whereas ignoring the more challenging
tasks in typical unconstrained low-resolution web imagery data. Furthermore,
to enable a proper study of LRFR, we introduce a large LRFR benchmark
TinyFace. Compared to previous FR datasets that focus on high-resolution face
images, TinyFace is uniquely characterised by natively low-resolution and un-
constrained face images, both for model training and testing. Our experiments
show that TinyFace imposes a more challenging test to current deep learning
face recognition models. For example, the CentreFace model yields 32.1% Rank-
1 on TinyFace versus 65.2% on MegaFace, i.e. a 504+% performance degradation.
Additionally, we demonstrate that synthetic (artificially down-sampled) LRFR
is a relatively easier task than the native counterpart. We further show the per-
formance advantage of the proposed CSRI approach to native LRFR. Extensive
comparative evaluations show the superiority of CSRI over a range of state-of-
the-art face recognition and super-resolution deep learning methods when tested
on the newly introduced TinyFace benchmark. Our more detailed CSRI compo-
nent analysis provides further insights on the CSRI model design.

Acknowledgement

This work was partially supported by the Royal Society Newton Advanced Fel-
lowship Programme (NA150459), Innovate UK Industrial Challenge Project on
Developing and Commercialising Intelligent Video Analytics Solutions for Public
Safety (98111-571149), Vision Semantics Ltd, and SeeQuestor Ltd.



Low-Resolution Face Recognition 15

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns:
Application to face recognition. IEEE TPAMI (2006)

. Ahonen, T., Rahtu, E., Ojansivu, V., Heikkila, J.: Recognition of blurred faces

using local phase quantization. In: ICPR (2008)

Bansal, A., Nanduri, A., Castillo, C., Ranjan, R., Chellappa, R.: Umdfaces: An
annotated face dataset for training deep networks. arXiv (2016)

Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces:
Recognition using class specific linear projection. IEEE TPAMI (1997)
Best-Rowden, L., Han, H., Otto, C., Klare, B.F., Jain, A.K.: Unconstrained face
recognition: Identifying a person of interest from a media collection. IEEE Trans-
actions on Information Forensics and Security (2014)

. Biswas, S., Bowyer, K.W., Flynn, P.J.: Multidimensional scaling for matching low-

resolution facial images. In: BTAS (2010)

Biswas, S., Bowyer, K.W., Flynn, P.J.: Multidimensional scaling for matching low-
resolution face images. IEEE TPAMI (2012)

Chen, D., Cao, X., Wen, F., Sun, J.: Blessing of dimensionality: High-dimensional
feature and its efficient compression for face verification. In: CVPR (2013)
Cheng, Z., Zhu, X., Gong, S.: Surveillance face recognition challenge. arXiv preprint
arXiv:1804.09691 (2018)

Choi, J.Y., Ro, Y.M., Plataniotis, K.N.: Color face recognition for degraded face
images. IEEE TSMC(Part B) (2009)

Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for
image super-resolution. In: ECCV (2014)

Fookes, C., Lin, F., Chandran, V., Sridharan, S.: Evaluation of image resolution
and super-resolution on face recognition performance. Journal of Visual Commu-
nication and Image Representation (2012)

Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: Illumi-
nation cone models for face recognition under variable lighting and pose. IEEE
TPAMI (2001)

Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: Multi-pie. IVC (2010)
Gunturk, B.K., Batur, A.U., Altunbasak, Y., Hayes, M.H., Mersereau, R.M.:
Eigenface-domain super-resolution for face recognition. IEEE TIP 12(5) (2003)
Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: Ms-celeb-1m: A dataset and benchmark
for large-scale face recognition. In: ECCV (2016)

He, X., Cai, D., Yan, S., Zhang, H.J.: Neighborhood preserving embedding. In:
ICCV (2005)

Hennings-Yeomans, P.H., Baker, S., Kumar, B.V.: Simultaneous super-resolution
and feature extraction for recognition of low-resolution faces. In: CVPR, (2008)
Hu, P., Ramanan, D.: Finding tiny faces. arXiv (2016)

Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild:
A database for studying face recognition in unconstrained environments. Tech.
rep., University of Massachusetts (2007)

Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor
search. IEEE TPAMI 33(1), 117-128 (2011)

Kemelmacher-Shlizerman, 1., Seitz, S.M., Miller, D., Brossard, E.: The megaface
benchmark: 1 million faces for recognition at scale. In: CVPR (2016)

Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very
deep convolutional networks. In: CVPR (2016)



16

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.
40.

41.

42.

43.

44.

45.

46.

47.

48.

Z. Cheng et al.

Klare, B.F., Klein, B., Taborsky, E., Blanton, A., Cheney, J., Allen, K., Grother,
P., Mah, A., Jain, A.K.: Pushing the frontiers of unconstrained face detection and
recognition: Iarpa janus benchmark a. In: CVPR (2015)

Lei, Z., Ahonen, T., Pietikdinen, M., Li, S.Z.: Local frequency descriptor for low-
resolution face recognition. In: FG (2011)

Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: Sphereface: Deep hypersphere
embedding for face recognition. arXiv (2017)

Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In:
ICCV (2015)

Nech, A., Kemelmacher-Shlizerman, I.: Level playing field for million scale face
recognition. arXiv preprint arXiv:1705.00393 (2017)

Ng, H-W., Winkler, S.: A data-driven approach to cleaning large face datasets. In:
ICIP (2014)

Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: BMVC (2015)
Phillips, P.J., Scruggs, W.T., O’Toole, A.J., Flynn, P.J., Bowyer, K.W., Schott,
C.L., Sharpe, M.: Frvt 2006 and ice 2006 large-scale experimental results. IEEE
TPAMI 32(5), 831-846 (2010)

Ren, C.X., Dai, D.Q., Yan, H.: Coupled kernel embedding for low-resolution face
image recognition. IEEE TIP 21(8), 3770-3783 (2012)

Samaria, F.S., Harter, A.C.: Parameterisation of a stochastic model for human face
identification. In: IEEE Workshop on Applications of Computer Vision (1994)
Shekhar, S., Patel, V.M., Chellappa, R.: Synthesis-based recognition of low reso-
lution faces. In: IJCB (2011)

Sim, T., Baker, S., Bsat, M.: The cmu pose, illumination, and expression (pie)
database. In: FG. pp. 53-58 (2002)

Sun, Y., Chen, Y., Wang, X., Tang, X.: Deep learning face representation by joint
identification-verification. In: NIPS (2014)

Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual net-
work. In: CVPR (2017)

Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: A large data set
for nonparametric object and scene recognition. IEEE TPAMI 30(11) (2008)
Wang, D., Otto, C., Jain, A.K.: Face search at scale. IEEE TPAMI (2016)

Wang, X., Tang, X.: Face hallucination and recognition. In: International Confer-
ence on Audio-and Video-Based Biometric Person Authentication (2003)

Wang, Z., Chang, S., Yang, Y., Liu, D., Huang, T.S.: Studying very low resolution
recognition using deep networks. In: CVPR (2016)

Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach
for deep face recognition. In: ECCV. Springer (2016)

Wong, Y., Sanderson, C., Mau, S., Lovell, B.C.: Dynamic amelioration of resolution
mismatches for local feature based identity inference. In: ICPR (2010)

Yang, S., Luo, P., Loy, C.C., Tang, X.: Wider face: A face detection benchmark.
In: CVPR (2016)

Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning face representation from scratch. arXiv
(2014)

Zhang, N., Paluri, M., Taigman, Y., Fergus, R., Bourdev, L.: Beyond frontal faces:
Improving person recognition using multiple cues. In: CVPR (2015)

Zhu, X.: Semantic Structure Discovery in Surveillance Videos. Ph.D. thesis, Queen
Mary University of London (2016)

Zou, W.W., Yuen, P.C.: Very low resolution face recognition problem. IEEE TIP
21(1), 327-340 (2012)



	Low-Resolution Face Recognition

