21 research outputs found

    Helium burning and neutron sources in the stars

    Get PDF
    Helium burning represents an important stage of stellar evolution as it contributes to the synthesis of key elements such as carbon, through the triple-alfa process, and oxygen, through the 12C(alfa, gamma)16O reaction. It is the ratio of carbon to oxygen at the end of the helium burning stage that governs the following phases of stellar evolution leading to different scenarios depending on the initial stellar mass. In addition, helium burning in Asymptotic Giant Branch stars, provides the two main sources of neutrons, namely the 13C(alfa, n)16O and the 22Ne(alfa, n)25Mg, for the synthesis of about half of all elements heavier than iron through the s-process. Given the importance of these reactions, much experimental work has been devoted to the study of their reaction rates over the last few decades. However, large uncertainties still remain at the energies of astrophysical interest which greatly limit the accuracy of stellar models predictions. Here, we review the current status on the latest experimental efforts and show how measurements of these important reaction cross sections can be significantly improved at next-generation deep underground laboratories

    Surface analysis of titanium dental implants with different topographies

    No full text
    Cylindrical dental implants made of commercially pure titanium were analysed in four different surface finishes: as-machined, Al2O3 blasted with Al2O3 particles, plasma-sprayed with titanium beads and electrolytically coated with hydroxyapatite. Scanning electron microscopy (SEM) with Energy Dispersive X-ray Analysis (EDX) revealed the topography of the surfaces and provided qualitative results of the chemical composition of the different implants. X-ray Photoelectron Spectroscopy (XPS) was used to perform chemical analysis on the surface of the implants while Laser Scanning Confocal Microscopy (LSM) produced topographic maps of the analysed surfaces. Optical Profilometry was used to quantitatively characterise the level of roughness of the surfaces. The implant that was plasma-sprayed and the hydroxyapatite coated implant showed the roughest surface, followed by the implant blasted with alumina and the as-machined implant. Some remnant contamination from the processes of blasting, coating and cleaning was detected by XPS

    Sustainable Agroforestry Landscape Management: Changing the Game

    No full text
    Location-specific forms of agroforestry management can reduce problems in the forest–water–people nexus, by balancing upstream and downstream interests, but social and ecological finetuning is needed. New ways of achieving shared understanding of the underlying ecological and social-ecological relations is needed to adapt and contextualize generic solutions. Addressing these challenges between thirteen cases of tropical agroforestry scenario development across three continents requires exploration of generic aspects of issues, knowledge and participative approaches. Participative projects with local stakeholders increasingly use ‘serious gaming’. Although helpful, serious games so far (1) appear to be ad hoc, case dependent, with poorly defined extrapolation domains, (2) require heavy research investment, (3) have untested cultural limitations and (4) lack clarity on where and how they can be used in policy making. We classify the main forest–water–people nexus issues and the types of land-use solutions that shape local discourses and that are to be brought to life in the games. Four ‘prototype’ games will be further used to test hypotheses about the four problems identified constraining game use. The resulting generic forest–water–people games will be the outcome of the project “Scenario evaluation for sustainable agroforestry management through forest-water-people games” (SESAM), for which this article provides a preview
    corecore