48 research outputs found

    Retrospective analysis of the Draize test for serious eye damage/eye irritation: importance of understanding the in vivo endpoints under UN GHS/EU CLP for the development and evaluation of in vitro test methods

    Get PDF
    For more than two decades, scientists have been trying to replace the regulatory in vivo Draize eye test by in vitro methods, but so far only partial replacement has been achieved. In order to better understand the reasons for this, historical in vivo rabbit data were analysed in detail and resampled with the purpose of (1) revealing which of the in vivo endpoints are most important in driving United Nations Globally Harmonized System/European Union Regulation on Classification, Labelling and Packaging (UN GHS/EU CLP) classification for serious eye damage/eye irritation and (2) evaluating the method’s within-test variability for proposing acceptable and justifiable target values of sensitivity and specificity for alternative methods and their combinations in testing strategies. Among the Cat 1 chemicals evaluated, 36–65 % (depending on the database) were classified based only on persistence of effects, with the remaining being classified mostly based on severe corneal effects. Iritis was found to rarely drive the classification (<4 % of both Cat 1 and Cat 2 chemicals). The two most important endpoints driving Cat 2 classification are conjunctiva redness (75–81 %) and corneal opacity (54–75 %). The resampling analyses demonstrated an overall probability of at least 11 % that chemicals classified as Cat 1 by the Draize eye test could be equally identified as Cat 2 and of about 12 % for Cat 2 chemicals to be equally identified as No Cat. On the other hand, the over-classification error for No Cat and Cat 2 was negligible (<1 %), which strongly suggests a high over-predictive power of the Draize eye test. Moreover, our analyses of the classification drivers suggest a critical revision of the UN GHS/EU CLP decision criteria for the classification of chemicals based on Draize eye test data, in particular Cat 1 based only on persistence of conjunctiva effects or corneal opacity scores of 4. In order to successfully replace the regulatory in vivo Draize eye test, it will be important to recognise these uncertainties and to have in vitro tools to address the most important in vivo endpoints identified in this paper.JRC.I.5-Systems Toxicolog

    Fragility of epidermis and its consequence in dermatology

    Get PDF
    The skin is the largest organ of the body, providing a protective barrier against bacteria, chemicals and physical insults while maintaining homeostasis in the internal environment. Such a barrier function the skin ensures protection against excessive water loss. The skin's immune defence consists of several facets, including immediate, non-specific mechanisms (innate immunity) and delayed, stimulus-specific responses (adaptive immunity), which contribute to fending off a wide range of potentially invasive microorganisms. This article is an overview of all known data about 'fragile skin'. Fragile skin is defined as skin with lower resistance to aggressions. Fragile skin can be classified into four categories up to its origin: physiological fragile skin (age, location), pathological fragile skin (acute and chronic), circumstantial fragile skin (due to environmental extrinsic factors or intrinsic factors such as stress) and iatrogenic fragile skin. This article includes the epidemiologic data, pathologic description of fragile skin with pathophysiological bases (mechanical and immunological role of skin barrier) and clinical description of fragile skin in atopic dermatitis, in acne, in rosacea, in psoriasis, in contact dermatitis and other dermatologic pathologies. This article includes also clinical cases and differential diagnosis of fragile skin (reactive skin) in face in adult population. In conclusion, fragile skin is very frequent worldwide and its prevalence varies between 25% and 52% in Caucasian, African and Asian population. © 2014 European Academy of Dermatology and Venereology

    Results from in vitro and ex vivo skin aging models assessing the antiglycation and anti-elastase MMP-12 potential of glycylglycine oleamide

    No full text
    Patrick Bogdanowicz,&nbsp;Marie-Jos&eacute; Haure,&nbsp;Isabelle Ceruti,&nbsp;Sandrine Bessou-Touya,&nbsp;Nathalie Castex-Rizzi Department of Pharmacology,&nbsp;Pierre Fabre Dermo-Cosm&eacute;tique, Toulouse,&nbsp;France Background: Glycation is an aging reaction of naturally occurring sugars with dermal proteins. Type I collagen and elastin are most affected by glycation during intrinsic chronological aging. Aim: To study the in vitro and ex vivo assays in human skin cells and explants and the antiaging effects of glycylglycine oleamide (GGO). Materials and methods: The antiglycation effect of GGO was assessed in a noncellular in vitro study on collagen and, ex vivo, by immunohistochemical staining on human skin explants (elastin network glycation). The ability of GGO to contract fibroblasts was assessed in a functional assay, and its anti-elastase (MMP-12) activity was compared to that of oleic acid alone, glycylglycine (GG) alone, and oleic acid associated with GG. Results: In vitro, GGO reduced the glycation of type I collagen. Ex vivo, GGO restored the expression of fibrillin-1 inhibited by glycation. Furthermore, GGO induced a tissue retraction of almost 30%. Moreover, the MMP-12 activity was inhibited by up to 60%. Conclusion: Under the present in vitro and ex vivo conditions, GGO prevents glycation of the major structural proteins of the dermis, helping to reduce the risk of rigidification. By maintaining the elastic function of the skin, GGO may be a promising sparring partner for other topical antiaging agents. Keywords: extracellular matrix, glycylglycine oleamide, glycation, fibrillin-1, matrix metalloproteinase-12, skin agin

    Blue light impairs the repair of UVB-induced pyrimidine dimers in a human skin model

    No full text
    International audienceIn recent years, interest is growing in the biological cutaneous effects of high‐energy visible light (400–450 nm). In the present study, we explored the impact of blue light (BL) on the repair of pyrimidine dimers, the major class of premutagenic DNA damage induced by exposure to sunlight. We unambiguously demonstrate that the exposure of in vitro reconstructed human epidermis to environmentally relevant doses of BL strongly decreases the rate of repair of cyclobutane pyrimidine dimers and pyrimidine (6‐4) pyrimidone photoproducts induced by a subsequent UVB irradiation. Using the highly sensitive and specific liquid chromatography‐tandem mass spectrometry assay, we did not observe induction of pyrimidine dimers by BL alone. Finally, we showed that application, during the BL exposure step, of a formula containing a new filter, named TriAsorB and affording BL photoprotection, prevented the decrease in DNA repair efficiency. These results emphasize the potential deleterious effects of BL on DNA repair and the interest in providing adequate skin protection against this wavelength range of sunlight
    corecore