8,766 research outputs found

    From vertex detectors to inner trackers with CMOS pixel sensors

    Full text link
    The use of CMOS Pixel Sensors (CPS) for high resolution and low material vertex detectors has been validated with the 2014 and 2015 physics runs of the STAR-PXL detector at RHIC/BNL. This opens the door to the use of CPS for inner tracking devices, with 10-100 times larger sensitive area, which require therefore a sensor design privileging power saving, response uniformity and robustness. The 350 nm CMOS technology used for the STAR-PXL sensors was considered as too poorly suited to upcoming applications like the upgraded ALICE Inner Tracking System (ITS), which requires sensors with one order of magnitude improvement on readout speed and improved radiation tolerance. This triggered the exploration of a deeper sub-micron CMOS technology, Tower-Jazz 180 nm, for the design of a CPS well adapted for the new ALICE-ITS running conditions. This paper reports the R&D results for the conception of a CPS well adapted for the ALICE-ITS.Comment: 4 pages, 4 figures, VCI 2016 conference proceeding

    Addendum to "Coherent radio pulses from GEANT generated electromagnetic showers in ice"

    Full text link
    We reevaluate our published calculations of electromagnetic showers generated by GEANT 3.21 and the radio frequency pulses they produce in ice. We are prompted by a recent report showing that GEANT 3.21-modeled showers are sensitive to internal settings in the electron tracking subroutine. We report the shower and pulse characteristics obtained with different settings of GEANT 3.21 and with GEANT 4. The default setting of electron tracking in GEANT 3.21 we used in previous work speeds up the shower simulation at the cost of information near the end of the tracks. We find that settings tracking electron and positron to lower energy yield a more accurate calculation, a more intense shower, and proportionately stronger radio pulses at low frequencies. At high frequencies the relation between shower tracking algorithm and pulse spectrum is more complex. We obtain radial distributions of shower particles and phase distributions of pulses from 100 GeV showers that are consistent with our published results.Comment: 4 pages, 3 figure

    Charm meson resonances in DPνD \to P \ell \nu decays

    Full text link
    Motivated by recent experimental results we reconsider semileptonic DPνD \to P \ell \nu_{\ell} decays within a model which combines heavy quark symmetry and properties of the chiral Lagrangian. We include excited charm meson states, some of them recently observed, in our Lagrangian and determine their impact on the charm meson semileptonic form factors. We find that the inclusion of excited charm meson states in the model leads to a rather good agreement with the experimental results on the q2q^2 shape of the F+(q2)F_+(q^2) form factor. We also calculate branching ratios for all DPνD \to P \ell \nu_{\ell} decays.Comment: 9 pages, 4 figures; minor corrections, added some discussion, version as publishe

    Ammonia trace measurements at ppb level based on near-IR photoacoustic spectroscopy

    Get PDF
    A photoacoustic sensor using a laser diode emitting near 1532nm in combination with an erbium-doped fibre amplifier has been developed for ammonia trace gas analysis at atmospheric pressure. NH3 concentration measurements down to 6ppb and a noise-equivalent detection limit below 3ppb in dry air are demonstrated. Two wavelength-modulation schemes with 1f and 2f detection using a lock-in amplifier were investigated and compared to maximise the signal-to-noise ratio. A quantitative analysis of CO2 and H2O interference with NH3 is presented. Typical concentrations present in ambient air of 400ppm CO2 and 1.15% H2O (50% relative humidity at 20°C) result in a NH3 equivalent concentration of 36ppb and 100ppb, respectivel

    Nonlinear Competition Between Small and Large Hexagonal Patterns

    Full text link
    Recent experiments by Kudrolli, Pier and Gollub on surface waves, parametrically excited by two-frequency forcing, show a transition from a small hexagonal standing wave pattern to a triangular ``superlattice'' pattern. We show that generically the hexagons and the superlattice wave patterns bifurcate simultaneously from the flat surface state as the forcing amplitude is increased, and that the experimentally-observed transition can be described by considering a low-dimensional bifurcation problem. A number of predictions come out of this general analysis.Comment: 4 pages, RevTex, revised, to appear in Phys. Rev. Let

    Tactics for Reasoning modulo AC in Coq

    Get PDF
    We present a set of tools for rewriting modulo associativity and commutativity (AC) in Coq, solving a long-standing practical problem. We use two building blocks: first, an extensible reflexive decision procedure for equality modulo AC; second, an OCaml plug-in for pattern matching modulo AC. We handle associative only operations, neutral elements, uninterpreted function symbols, and user-defined equivalence relations. By relying on type-classes for the reification phase, we can infer these properties automatically, so that end-users do not need to specify which operation is A or AC, or which constant is a neutral element.Comment: 16

    New limits for neutrinoless tau decays

    Get PDF
    Neutrinoless 3-prong tau lepton decays into a charged lepton and either two charged particles or one neutral meson have been searched for using 4.79fb^(-1) of data collected with the CLEO II detector at Cornell Electron Storage Ring. This analysis represents an update of a previous study and the addition of six decay channels. In all channels the numbers of events found are compatible with background estimates and branching fraction upper limits are set for 28 different decay modes. These limits are either more stringent than those set previously or represent the first attempt to find these decays

    Charm as a domain wall fermion in quenched lattice QCD

    Get PDF
    We report a study describing the charm quark by a domain-wall fermion (DWF) in lattice quantum chromodynamics (QCD). Our study uses a quenched gauge ensemble with the DBW2 rectangle-improved gauge action at a lattice cutoff of a13a^{-1} \sim 3 GeV. We calculate masses of heavy-light (charmed) and heavy-heavy (charmonium) mesons with spin-parity JP=0J^P = 0^\mp and 11^\mp, leptonic decay constants of the charmed pseudoscalar mesons (DD and DsD_s), and the D0D^0-D0ˉ\bar{D^0} mixing parameter. The charm quark mass is found to be mcMSˉ(mc)=1.24(1)(18)m^{\bar{\rm MS}}_{c}(m_{c})=1.24(1)(18) GeV. The mass splittings in charmed-meson parity partners Δq,J=0\Delta_{q,J=0} and Δq,J=1\Delta_{q, J=1} are degenerate within statistical errors, in accord with experiment, and they satisfy a relation Δq=ud,J>Δq=s,J\Delta_{q=ud, J} > \Delta_{q=s, J}, also consistent with experiment. A C-odd axial vector charmonium state, hc),lies22(11)MeVabovetheh_c), lies 22(11) MeV above the \chi_{c1}meson,or meson, or m_{h_{c}} = 3533(11)_{\rm stat.}MeVusingtheexperimental MeV using the experimental \chi_{c1}) mass. However, in this regard, we emphasize significant discrepancies in the calculation of hyperfine splittings on the lattice. The leptonic decay constants of DD and DsD_s mesons are found to be fD=232(7)stat.(0+6)chiral(11)syst.f_D=232(7)_{\rm stat.}(^{+6}_{-0})_{\rm chiral}(11)_{\rm syst.} MeV and fDs/fD=1.05(2)stat.(2+0)chiral(2)syst.f_{D_s}/f_{D} = 1.05(2)_{\rm stat.}(^{+0}_{-2})_{\rm chiral}(2)_{\rm syst.}, where the first error is statistical, the second a systematic due to chiral extrapolation and the third error combination of other known systematics. The D0D^0-D0ˉ\bar{D^0} mixing bag parameter, which enters the ΔC=2\Delta C = 2 transition amplitude, is found to be BD(2GeV)=0.845(24)stat.(6+24)chiral(105)syst.B_D(2{GeV})=0.845(24)_{\rm stat.}(^{+24}_{-6})_{\rm chiral}(105)_{\rm syst.}.Comment: 49 pages, 15 figure
    corecore