3 research outputs found

    Control of the pancreatic β-cell functional mass by glucocorticoids and pgc-1α

    No full text
    Les glucocorticoïdes (GCs) ont des effets diabétogènes avérés. Précédemment, notre équipe a également pu montrer que les GCs, en association avec le corégulateur transcriptionnel PGC-1α, sont impliqués dans la programmation fœtale du diabète de type 2 (DT2). Le DT2 est une maladie métabolique, conséquence à la fois de l’insulinorésistance et d’un défaut de sécrétion d’insuline en partie dû à la diminution de la masse des cellules β. Au laboratoire nous nous intéressons donc d’une part aux mécanismes sous-jacents des effets diabétogènes des GCs et d’autre part, aux mécanismes permettant d’améliorer la sécrétion d’insuline en restaurant une masse fonctionnelle de cellules β. Dans la première partie de cette thèse, nous avons montré que PGC-1α, dont l’expression est stimulée par les GCs dans les cellules β, induit un double stress énergétique et oxydatif impliqué dans l’altération de la sécrétion d’insuline. Dans la deuxième partie, nous avons montré grâce à un model murin d’insulinorésistance sévère par surexposition aux GCs, que l’adaptation compensatrice de la masse fonctionnelle des cellules β se fait par un processus de néogenèse, impliquant la réexpression du facteur Ngn3. Ce processus, indépendant de l’effet des GCs sur le pancréas, alimente l’hypothèse d’un facteur circulant libéré par les organes insulinorésistants pour instruire le pancréas endocrine et initier la néogenèse des cellules β. En conclusion, nos travaux associent indirectement les GCs : 1/ à un effet délétère sur la sécrétion et impliquant PGC-1α et 2/ à un effet bénéfique sur la masse β et impliquant Ngn3. Ces deux voies constituent des perspectives thérapeutiques intéressantes du DT2.Glucocorticoids (GCs) are hormones secreted in response to stress and that display diabetogenic effects. Previously, our team was able to demonstrate that GCs, in combination with the transcriptional co-regulator PGC-1α, are involved in fetal programming of type 2 diabetes (T2D). T2D is a metabolic disease characterized by fasting hyperglycemia, consequence of both insulin resistance and an insulin secretory defect, partly due to the decrease of the mass of β cells. In the laboratory we are therefore interested in understanding the mechanisms underlying diabetogenic effects of GCs, and mechanisms that improve insulin secretion and functional β-cell mass. In the first part of this thesis, we have shown that PGC-1α, whose expression is strongly stimulated by GCs in β cells, induces both energy and oxidative stress involved in impaired insulin secretion. In the second part of this thesis, we demonstrated through a murine model of massive GCs overexposure – which induces severe insulin resistance – that the adaptation of the functional β-cell mass in order to counteract insulin resistance occurs through a neogenesis process, involving the re-expression of Ngn3 factor. This process is independent of the effect of GCs on the pancreas. We hypothesize that a circulating factor released by insulin-resistant organs will instruct the endocrine pancreas to initiate β-cells neogenesis. In conclusion, our work indirectly associate GCs: 1/ to a deleterious effect on the secretion involving PGC-1α and 2/ to a beneficial effect on the β-cell mass and involving Ngn3. These two pathways are interesting therapeutic perspectives for curing T2D

    Fetal PGC-1 alpha Overexpression Programs Adult Pancreatic beta-Cell Dysfunction

    No full text
    International audienceAdult beta-cell dysfunction, a hallmark of type 2 diabetes, can be programmed by adverse fetal environment. We have shown that fetal glucocorticoids (GCs) participate in this programming through inhibition of beta-cell development. Here we have investigated the molecular mechanisms underlying this regulation. We showed that GCs stimulate the expression of peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1 alpha), a coregulator of the GCs receptor (GR), and that the overexpression of PGC-1 alpha represses genes important for beta-cell development and function. More precisely, PGC-1 alpha inhibited the expression of the key beta-cell transcription factor pancreatic duodenal homeobox 1 (Pdx1). This repression required the GR and was mediated through binding of a GR/PGC-1 alpha complex to the Pdx1 promoter. To explore PGC-1 alpha function, we generated mice with inducible beta-cell PGC-1 alpha overexpression. Mice overexpressing PGC-1 alpha exhibited at adult age impaired glucose tolerance associated with reduced insulin secretion, decreased beta-cell mass, and beta-cell hypotrophy. Interestingly, PGC-1 alpha expression in fetal life only was sufficient to impair adult beta-cell function whereas beta-cell PGC-1 alpha overexpression from adult age had no consequence on beta-cell function. Altogether, our results demonstrate that the GR and PGC-1 alpha participate in the fetal programming of adult beta-cell function through inhibition of Pdx1 expression. Diabetes 62:1206-1216, 201

    Adaptive β-Cell Neogenesis in the Adult Mouse in Response to Glucocorticoid-Induced Insulin Resistance

    No full text
    International audienceBoth type 1 and type 2 diabetes are characterized by deficient insulin secretion and decreased β-cell mass. Thus, regenerative strategies to increase β-cell mass need to be developed. To characterize mechanisms of β-cell plasticity, we studied a model of severe insulin resistance in the adult mouse and defined how β-cells adapt. Chronic corticosterone (CORT) treatment was given to adult mice and led to rapid insulin resistance and adaptive increased insulin secretion. Adaptive and massive increase of β-cell mass was observed during treatment up to 8 weeks. β-Cell mass increase was partially reversible upon treatment cessation and reinduced upon subsequent treatment. β-Cell neogenesis was suggested by an increased number of islets, mainly close to ducts, and increased Sox9 and Ngn3 mRNA levels in islets, but lineage-tracing experiments revealed that neoformed β-cells did not derive from Sox9- or Ngn3-expressing cells. CORT treatment after β-cell depletion partially restored β-cells. Finally, β-cell neogenesis was shown to be indirectly stimulated by CORT because serum from CORT-treated mice increased β-cell differentiation in in vitro cultures of pancreatic buds. Altogether, the results present a novel model of β-cell neogenesis in the adult mouse and identify the presence of neogenic factors in the serum of CORT-treated mice
    corecore