84 research outputs found

    Whole Genome Sequencing of Enteroviruses Species A to D by High-Throughput Sequencing: Application for Viral Mixtures

    Get PDF
    Human enteroviruses (EV) consist of more than 100 serotypes classified within four species for enteroviruses (EV-A to -D) and three species for rhinoviruses, which have been implicated in a variety of human illnesses. Being able to simultaneously amplify the whole genome and identify enteroviruses in samples is important for studying the viral diversity in different geographical regions and populations. It also provides knowledge about the evolution of these viruses. Therefore, we developed a rapid, sensitive method to detect and genetically classify all human enteroviruses in mixtures. Strains of EV-A (15), EV-B (40), EV-C (20), and EV-D (2) viruses were used in addition to 20 supernatants from RD cells infected with stool extracts or sewage concentrates. Two overlapping fragments were produced using a newly designed degenerated primer targeting the conserved CRE region for enteroviruses A-D and one degenerated primer set designed to specifically target the conserved region for each enterovirus species (EV-A to -D). This method was capable of sequencing the full genome for all viruses except two, for which nearly 90% of the genome was sequenced. This method also demonstrated the ability to discriminate, in both spiked and unspiked mixtures, the different enterovirus types present

    O'nyong-nyong Virus, Chad

    Get PDF
    We report the first laboratory-confirmed human infection with O'nyong-nyong virus in Chad. This virus was isolated from peripheral blood mononuclear cells of a patient with evidence of a seroconversion to a virus related to Chikungunya virus. Genome sequence was partly determined, and phylogenetic studies were conducted

    Chikungunya Virus, Cameroon, 2006

    Get PDF
    We report the isolation of chikungunya virus from a patient during an outbreak of a denguelike syndrome in Cameroon in 2006. The virus was phylogenetically grouped in the Democratic Republic of the Congo cluster, indicating a continuous circulation of a genetically similar chikungunya virus population during 6 years in Central Africa

    Dengue Type 3 Virus, Saint Martin, 2003–2004

    Get PDF
    We describe the spread of a dengue virus during an outbreak in Saint Martin island (French West Indies) during winter 2003–2004. Dengue type 3 viruses were isolated from 6 patients exhibiting clinical symptoms. This serotype had not been detected on the island during the preceding 3 years. Genome sequence determinations and analyses showed a common origin with dengue type 3 viruses isolated in Martinique 2 years earlier

    Genetic Relationship between Cocirculating Human Enteroviruses Species C

    Get PDF
    Recombination events between human enteroviruses (HEV) are known to occur frequently and to participate in the evolution of these viruses. In a previous study, we reported the isolation of a panel of viruses belonging to the Human enterovirus species C (HEV-C) that had been cocirculating in a small geographic area of Madagascar in 2002. This panel included type 2 vaccine-derived polioviruses (PV) that had caused several cases of acute flaccid paralysis in humans. Previous partial sequencing of the genome of these HEV-C isolates revealed considerable genetic diversity, mostly due to recombination. In the work presented herein, we carried out a more detailed characterization of the genomes of viruses from this collection. First, we determined the full VP1 sequence of 41 of these isolates of different types. These sequences were compared with those of HEV-C isolates obtained from other countries or in other contexts. The sequences of the Madagascan isolates of a given type formed specific clusters clearly differentiated from those formed by other strains of the same type isolated elsewhere. Second, we sequenced the entire genome of 10 viruses representing most of the lineages present in this panel. All but one of the genomes appeared to be mosaic assemblies of different genomic fragments generated by intra- and intertypic recombination. The location of the breakpoints suggested potential preferred genomic regions for recombination. Our results also suggest that recombination between type HEV-99 and other HEV-C may be quite rare. This first exhaustive genomic analysis of a panel of non-PV HEV-C cocirculating in a small human population highlights the high frequency of inter and intra-typic genetic recombination, constituting a widespread mechanism of genetic plasticity and continually shifting the HEV-C biodiversity

    Éradication des poliovirus : 3 moins 2 Ă©galent 3

    No full text
    International audienceL' annĂ©e 2019 a Ă©tĂ© marquĂ©e par l'annonce officielle de l'Organisation mondiale de la santĂ© (OMS) de l'Ă©radication du poliovirus sauvage de sĂ©rotype 3. L'Ă©radication peut ĂȘtre certifiĂ©e aprĂšs 3 annĂ©es consĂ©cutives sans dĂ©tection du virus et alors que la surveillance est conduite de façon satisfaisante. Dans le cas du sĂ©rotype 3, le dernier spĂ©cimen sauvage a Ă©tĂ© dĂ©tectĂ© en 2012 au NigĂ©ria [1]. En 2015, l'OMS avait dĂ©jĂ  proclamĂ© l'Ă©radication du poliovirus sauvage de sĂ©rotype 2 dont aucun reprĂ©sentant n'a Ă©tĂ© dĂ©tectĂ© depuis 1999. À ce jour, seul le poliovirus sauvage de sĂ©rotype 1 continue Ă  circuler et est endiguĂ© dans deux pays, l'Afghanistan et le Pakistan [2, 3]. Cette double Ă©radication est le fruit des efforts continus visant l'Ă©radication de la poliomyĂ©lite, une maladie redoutable caractĂ©risĂ©e par des paralysies dues Ă  la destruction de neurones moteurs par le poliovirus. LancĂ© en 1988, le programme mondial d'Ă©radication a permis une rĂ©duction drastique du nombre de cas de poliomyĂ©lite, ainsi moins de 600 cas ont Ă©tĂ© recensĂ©s dans le monde en 2019 contre environ 350 000 cas annuels Ă  la fin des annĂ©es 1980. La rĂ©duction importante du nombre de cas de poliomyĂ©lite est un succĂšs indubitable du programme dont l'Ă©radication des souches sauvages de deux des trois sĂ©rotypes constitue un jalon majeur. Pourtant, l'Ă©radication des souches sauvages des sĂ©rotypes 2 et 3 ne signifie pas la disparition des poliovirus pathogĂšnes de ces deux sĂ©rotypes, certaines Ă©pidĂ©mies de poliomyĂ©lite sont en effet dues Ă  des variants naturels de souches vaccinales ayant recouvrĂ© un pouvoir pathogĂšne. Ces variants, appelĂ©s VDPV (pour vaccine-derived polio-virus), dĂ©rivent des souches vivantes attĂ©nuĂ©es qui composent le vaccin polio oral (VPO). ComparĂ© au vaccin polio injectable (VPI) composĂ© de poliovirus inactivĂ©s, le VPO prĂ©sente de nombreux avantages. En premier lieu, la logistique associĂ©e au VPO est beaucoup plus lĂ©gĂšre puisque son administration ne nĂ©cessite pas d'injection. En effet, il peut ĂȘtre dĂ©livrĂ© par du personnel non mĂ©dical, il permet la vaccination rapide de nombreux enfants et il ne gĂ©nĂšre pas de dĂ©chets Ă  risque infectieux (aiguilles souillĂ©es). Par ailleurs, le coĂ»t du VPO est infĂ©rieur Ă  celui du VPI. Son principal avantage est d'ordre Ă©pidĂ©miologique car le VPI induit une immunitĂ© sĂ©rique qui empĂȘche le virus d'accĂ©der au systĂšme nerveux central (et donc de dĂ©truire les neurones moteurs) mais il n'induit pas d'immunitĂ© mucosale au niveau de l'intestin. Aussi, les personnes vaccinĂ©es avec le VPI sont protĂ©gĂ©es contre la maladie mais pas contre l'infection car cette forme est incapable de stopper la transmission du virus. Au contraire, les souches attĂ©nuĂ©es qui composent le VPO Ă©tablissent une vĂ©ritable infection au niveau de l'intestin des personnes vaccinĂ©es qui sont ainsi protĂ©gĂ©es contre une rĂ©infection par un poliovirus sauvage. Le VPO reste donc l'outil de choix pour contenir les Ă©pidĂ©mies et venir Ă  bout des derniers foyers de circulation des poliovirus sauvages. Le VPO possĂšde toutefois un inconvĂ©nient majeur puisque l'attĂ©nuation des souches vaccinales ne repose que sur quelques mutations. AprĂšs s'ĂȘtre rĂ©pliquĂ©es dans l'intestin de la personne vaccinĂ©e, les souches vaccinales sont excrĂ©tĂ©es dans les selles et vont pouvoir ĂȘtre transmises Ă  toute personne non vaccinĂ©e ; si la couverture vaccinale est faible, les souches vaccinales peuvent circuler durant des mois, voire des annĂ©es, et accumuler des modifications gĂ©nĂ©tiques jusqu'Ă  recouvrer un pouvoir pathogĂšne identique Ă  celui des souches sauvages [4]

    Le nouveau vaccin antipoliomyĂ©litique oral : un tournant dĂ©cisif pour le programme d’éradication ?

    No full text
    International audienceLaunched in 1988, the Global Polio Eradication Initiative (GPEI) aims to eradicate polioviruses, which are the etiologic agents of poliomyelitis. Coordinated by the World Health Organization, this program relies on two pillars: mass vaccination campaigns that target children and active surveillance of the virus circulation. The GPEI has led to the eradication of two out of three serotypes of wild polioviruses and to the containment of the last serotype in two countries.Two polio vaccines exist: the injectable vaccine and the oral one. Both induce an efficient protection against poliomyelitis, but only the oral vaccine is able to stop poliovirus transmission chains. Therefore, the oral vaccine is essential to contain polioviruses and, finally, to eradicate them. In some contexts where the vaccine coverage is not sufficient, the attenuated strains contained in the oral vaccine can circulate for months and recover a pathogenic phenotype through genetic drift. In order to prevent this phenomenon, a new vaccine strain has been developed through genetic engineering: it has been designed to be as immunogenic as the historical vaccine strain, but more genetically stable to prevent the loss of its attenuation determinants. After being evaluated in vitro and through clinical trials, the novel strain has been rolled out in several African countries and in Tajikistan in 2021.LancĂ© en 1988, le programme d’éradication de la poliomyĂ©lite vise Ă  Ă©radiquerles poliovirus, agents Ă©tiologiques de la maladie. CoordonnĂ© par l’Organisation mondialede la santĂ©, le programme repose sur des campagnes de vaccination de routine ciblant lesenfants et sur la surveillance active de la circulation des virus. Il a permis l’éradication dedeux des trois sĂ©rotypes de poliovirus sauvages et a circonscrit la circulation du sĂ©rotyperestant Ă  deux pays seulement.Deux vaccins antipoliomyĂ©litiques existent : le vaccin injectable et le vaccin oral. Si les deuxvaccins offrent une protection similaire contre la maladie, seul le second est capable debloquer la transmission des poliovirus. Le vaccin oral est donc indispensable pour endiguerles poliovirus et, finalement, les Ă©radiquer. Dans certains contextes oĂč la couverturevaccinale est faible, les souches attĂ©nuĂ©es qui composent le vaccin oral peuvent circulerdurant des mois et recouvrer un phĂ©notype pathogĂšne par dĂ©rive gĂ©nĂ©tique. Afin d’éviterce phĂ©nomĂšne, une nouvelle souche vaccinale a Ă©tĂ© dĂ©veloppĂ©e par gĂ©nie gĂ©nĂ©tique : elle aĂ©tĂ© conçue pour ĂȘtre aussi immunogĂšne que la souche vaccinale historique mais beaucoupplus stable gĂ©nĂ©tiquement afin d’éviter la perte des dĂ©terminants gĂ©nĂ©tiques de sonattĂ©nuation. AprĂšs une phase d’évaluation in vitro et des essais cliniques visant Ă  confirmerses propriĂ©tĂ©s, la nouvelle souche a Ă©tĂ© mise en oeuvre dans plusieurs pays africains et auTadjikistan en 2021

    Enteroviruses-the famous unknowns

    No full text
    International audienceComment on Circulation of non-polio enteroviruses in 24 EU and EEA countries between 2015 and 2017: a retrospective surveillance study. Bubba L, Broberg EK, Jasir A, Simmonds P, Harvala H; Enterovirus study collaborators. Lancet Infect Dis. 2020 Mar;20(3):350-361. doi: 10.1016/S1473-3099(19)30566-3. Epub 2019 Dec 20. PMID: 3187090
    • 

    corecore