49 research outputs found

    Epigenetic Regulation of Cell Type–Specific Expression Patterns in the Human Mammary Epithelium

    Get PDF
    Differentiation is an epigenetic program that involves the gradual loss of pluripotency and acquisition of cell type–specific features. Understanding these processes requires genome-wide analysis of epigenetic and gene expression profiles, which have been challenging in primary tissue samples due to limited numbers of cells available. Here we describe the application of high-throughput sequencing technology for profiling histone and DNA methylation, as well as gene expression patterns of normal human mammary progenitor-enriched and luminal lineage-committed cells. We observed significant differences in histone H3 lysine 27 tri-methylation (H3K27me3) enrichment and DNA methylation of genes expressed in a cell type–specific manner, suggesting their regulation by epigenetic mechanisms and a dynamic interplay between the two processes that together define developmental potential. The technologies we developed and the epigenetically regulated genes we identified will accelerate the characterization of primary cell epigenomes and the dissection of human mammary epithelial lineage-commitment and luminal differentiation

    Bimodal gene expression patterns in breast cancer

    Get PDF
    We identified a set of genes with an unexpected bimodal distribution among breast cancer patients in multiple studies. The property of bimodality seems to be common, as these genes were found on multiple microarray platforms and in studies with different end-points and patient cohorts. Bimodal genes tend to cluster into small groups of four to six genes with synchronised expression within the group (but not between the groups), which makes them good candidates for robust conditional descriptors. The groups tend to form concise network modules underlying their function in cancerogenesis of breast neoplasms

    Molecular profiling of human mammary gland links breast cancer risk to a p27(+) cell population with progenitor characteristics

    Get PDF
    Early full-term pregnancy is one of the most effective natural protections against breast cancer. To investigate this effect, we have characterized the global gene expression and epigenetic profiles of multiple cell types from normal breast tissue of nulliparous and parous women and carriers of BRCA1 or BRCA2 mutations. We found significant differences in CD44+ progenitor cells, where the levels of many stem cell-related genes and pathways, including the cell-cycle regulator p27, are lower in parous women without BRCA1/BRCA2 mutations. We also noted a significant reduction in the frequency of CD44+p27+ cells in parous women and showed, using explant cultures, that parity-related signaling pathways play a role in regulating the number of p27+ cells and their proliferation. Our results suggest that pathways controlling p27+ mammary epithelial cells and the numbers of these cells relate to breast cancer risk and can be explored for cancer risk assessment and prevention

    Overview of diseases in the study.

    No full text
    <p>For each disease, the table lists the GEO accession for the gene expression data sets, the number of differentially expressed genes (DEGs), and the number of drug targets associated to the disease in Integrity. The number of DEGs and drug targets are based on Entrez Gene identifiers.</p

    Drug Target Prediction and Repositioning Using an Integrated Network-Based Approach

    No full text
    <div><p>The discovery of novel drug targets is a significant challenge in drug development. Although the human genome comprises approximately 30,000 genes, proteins encoded by fewer than 400 are used as drug targets in the treatment of diseases. Therefore, novel drug targets are extremely valuable as the source for first in class drugs. On the other hand, many of the currently known drug targets are functionally pleiotropic and involved in multiple pathologies. Several of them are exploited for treating multiple diseases, which highlights the need for methods to reliably reposition drug targets to new indications. Network-based methods have been successfully applied to prioritize novel disease-associated genes. In recent years, several such algorithms have been developed, some focusing on local network properties only, and others taking the complete network topology into account. Common to all approaches is the understanding that novel disease-associated candidates are in close overall proximity to known disease genes. However, the relevance of these methods to the prediction of novel drug targets has not yet been assessed. Here, we present a network-based approach for the prediction of drug targets for a given disease. The method allows both repositioning drug targets known for other diseases to the given disease and the prediction of unexploited drug targets which are not used for treatment of any disease. Our approach takes as input a disease gene expression signature and a high-quality interaction network and outputs a prioritized list of drug targets. We demonstrate the high performance of our method and highlight the usefulness of the predictions in three case studies. We present novel drug targets for scleroderma and different types of cancer with their underlying biological processes. Furthermore, we demonstrate the ability of our method to identify non-suspected repositioning candidates using diabetes type 1 as an example.</p> </div

    Overview of the workflow.

    No full text
    <p>The analysis starts with a set of microarray samples from diseased and healthy donors, which is statistically processed to identify differentially expressed genes (DEGs). Furthermore, a high-quality interaction network serves as input to the analysis. The DEGs are overlaid onto the network and serve as input to the four network analysis methods, namely Neighborhood Scoring, Interconnectivity, Network Propagation, and Random Walk. The output of the methods is aggregated using a logistic regression model, which is trained on a set of drug targets from Integrity, resulting in the final ranked list of prioritized gene products.</p

    Consensus method performance.

    No full text
    <p>(A) The plot shows the median AUC for each disease model. The highest AUC of 93.19% is achieved for hyperplastic polyposis syndrome and the lowest for ischemic stroke with 63.27%. (B) and (C) show the ROC curves for hyperplastic polyposis syndrome and periodontitis, which achieved the highest performance. The blue areas around the AUC curves represent the 95% confidence intervals.</p

    Core network of predicted drug targets in cancers.

    No full text
    <p>(A) shows the commonly predicted drug targets (within the top 100 predictions) for colorectal cancer, thyroid cancer, ovarian cancer, melanoma, acute myeloid leukemia, and hepatocellular carcinoma. Yellow stars represent known disease biomarkers for neoplasms obtained from the Metabase resource. Cyan stars highlight genes that are known drug targets for at least one of the six types of cancer. (B) shows diseases that are significantly associated with the predicted drug targets. The diseases are ordered by the percentage of genes they cover. Neoplasms are found to cover all of the predicted drug targets. (C) shows the most enriched KEGG pathways for the predicted drug targets <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0060618#pone.0060618-Kanehisa1" target="_blank">[45]</a>. Cancer-related pathways are most enriched followed by pathways for specific cancers as well as cancer-related signaling pathways.</p

    Network reconstruction for COX-2 as repositioning candidate for diabetes type 1 therapy.

    No full text
    <p>Over-expression of COX-2 in monocytes leads to an increased production of prostaglandin E2. Prostaglandin E2 activates T-cell signaling through the PGE2 receptor resulting in increased cAMP levels and activation of the transcription factors CREB1 and CREM. cAMP inactivates the IL-2 receptor of T-cells, while CREM acts as repressor for IL-2. The inhibition of IL-2 and the IL-2 receptor result in immune regulation dysfunction leading to autoimmunity and ultimately the death of beta-cells, which is the cause of diabetes type 1. Predicted drug targets (within the top 100) for diabetes are highlighted with colored stars, where the numbers correspond to the rank in the drug target predictions. Purple stars correspond to drug targets that have been associated with other diseases and can be readily repositioned to the treatment of diabetes type 1. Red thermometers show significantly up-regulated genes in diabetes type 1. Green arrows correspond to activation edges, red arrows represent inhibition edges.</p
    corecore