99 research outputs found

    The attributes of plakins in cancer and disease: perspectives on ovarian cancer progression, chemoresistance and recurrence

    Get PDF
    The plakin family of cytoskeletal proteins play an important role in cancer progression yet are under-studied in cancer, especially ovarian cancer. These large cytoskeletal proteins have primary roles in the maintenance of cytoskeletal integrity but are also associated with scaffolds of intermediate filaments and hemidesmosomal adhesion complexes mediating signalling pathways that regulate cellular growth, migration, invasion and differentiation as well as stress response. Abnormalities of plakins, and the closely related spectraplakins, result in diseases of the skin, striated muscle and nervous tissue. Their prevalence in epithelial cells suggests that plakins may play a role in epithelial ovarian cancer progression and recurrence. In this review article, we explore the roles of plakins, particularly plectin, periplakin and envoplakin in disease-states and cancers with emphasis on ovarian cancer. We discuss the potential role the plakin family of proteins play in regulating cancer cell growth, survival, migration, invasion and drug resistance. We highlight potential relationships between plakins, epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) and discuss how interaction of these processes may affect ovarian cancer progression, chemoresistance and ultimately recurrence. We propose that molecular changes in the expression of plakins leads to the transition of benign ovarian tumours to carcinomas, as well as floating cellular aggregates (commonly known as spheroids) in the ascites microenvironment, which may contribute to the sustenance and progression of the disease. In this review, attempts have been made to understand the crucial changes in plakin expression in relation to progression and recurrence of ovarian cancer. [MediaObject not available: see fulltext.] Ā© 2021, The Author(s)

    Modulation of TCR signalling components occurs prior to positive selection and lineage commitment in iNKT cells

    Get PDF
    iNKT cells play a critical role in controlling the strength and character of adaptive and innate immune responses. Their unique functional characteristics are induced by a transcriptional program initiated by positive selection mediated by CD1d expressed by CD4+CD8+ (double positive, DP) thymocytes. Here, using a novel VĪ±14 TCR transgenic strain bearing greatly expanded numbers of CD24hiCD44loNKT cells, we examined transcriptional events in four immature thymic iNKT cell subsets. A transcriptional regulatory network approach identified transcriptional changes in proximal components of the TCR signalling cascade in DP NKT cells. Subsequently, positive and negative selection, and lineage commitment, occurred at the transition from DP NKT to CD4 NKT. Thus, this study introduces previously unrecognised steps in early NKT cell development, and separates the events associated with modulation of the T cell signalling cascade prior to changes associated with positive selection and lineage commitment. Ā© 2021, The Author(s). **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate ā€œStuart Berzinsā€ is provided in this record*

    Sphingosine 1-phosphate receptor 5 (S1PR5) regulates the peripheral retention of tissue-resident lymphocytes

    Get PDF
    Tissue-resident memory T (TRM) cells provide long-lasting immune protection. One of the key events controlling TRM cell development is the local retention of TRM cell precursors coupled to downregulation of molecules necessary for tissue exit. Sphingosine-1-phosphate receptor 5 (S1PR5) is a migratory receptor with an uncharted function in T cells. Here, we show that S1PR5 plays a critical role in T cell infiltration and emigration from peripheral organs, as well as being specifically downregulated in TRM cells. Consequentially, TRM cell development was selectively impaired upon ectopic expression of S1pr5, whereas loss of S1pr5 enhanced skin TRM cell formation by promoting peripheral T cell sequestration. Importantly, we found that T-bet and ZEB2 were required for S1pr5 induction and that local TGF-Ī² signaling was necessary to promote coordinated Tbx21, Zeb2, and S1pr5 downregulation. Moreover, S1PR5-mediated control of tissue residency was conserved across innate and adaptive immune compartments. Together, these results identify the T-bet-ZEB2-S1PR5 axis as a previously unappreciated mechanism modulating the generation of tissue-resident lymphocytes. Ā© 2021 Evrard et al

    Plasma signaling factors in patients with langerhans cell histiocytosis (LCH) correlate with relative frequencies of LCH cells and t cells within lesions

    Get PDF
    Langerhans cell histiocytosis (LCH) lesions contain an inflammatory infiltrate of immune cells including myeloid-derived LCH cells. Cell-signaling proteins within the lesion environment suggest that LCH cells and T cells contribute majorly to the inflammation. Foxp3+ regulatory T cells (Tregs) are enriched in lesions and blood from patients with LCH and are likely involved in LCH pathogenesis. In contrast, mucosal associated invariant T (MAIT) cells are reduced in blood from these patients and the consequence of this is unknown. Serum/plasma levels of cytokines have been associated with LCH disease extent and may play a role in the recruitment of cells to lesions. We investigated whether plasma signaling factors differed between patients with active and non-active LCH. Cell-signaling factors (38 analytes total) were measured in patient plasma and cell populations from matched lesions and/or peripheral blood were enumerated. This study aimed at understanding whether plasma factors corresponded with LCH cells and/or LCH-associated T cell subsets in patients with LCH. We identified several associations between plasma factors and lesional/circulating immune cell populations, thus highlighting new factors as potentially important in LCH pathogenesis. This study highlights plasma cell-signaling factors that are associated with LCH cells, MAIT cells or Tregs in patients, thus they are potentially important in LCH pathogenesis. Further study into these associations is needed to determine whether these factors may become suitable prognostic indicators or therapeutic targets to benefit patients. Copyright Ā© 2022 Mitchell, Kvedaraite, von Bahr Greenwood, Lourda, Henter, Berzins and Kannourakis

    Modulation of TCR signalling components occurs prior to positive selection and lineage commitment in iNKT cells

    Get PDF
    iNKT cells play a critical role in controlling the strength and character of adaptive and innate immune responses. Their unique functional characteristics are induced by a transcriptional program initiated by positive selection mediated by CD1d expressed by CD4+CD8+ (double positive, DP) thymocytes. Here, using a novel VĪ±14 TCR transgenic strain bearing greatly expanded numbers of CD24hiCD44loNKT cells, we examined transcriptional events in four immature thymic iNKT cell subsets. A transcriptional regulatory network approach identified transcriptional changes in proximal components of the TCR signalling cascade in DP NKT cells. Subsequently, positive and negative selection, and lineage commitment, occurred at the transition from DP NKT to CD4 NKT. Thus, this study introduces previously unrecognised steps in early NKT cell development and separates, the events associated with modulation of the T cell signalling cascade prior to changes associated with positive selection and lineage commitment

    Differential antitumor immunity mediated by NKT cell subsets in vivo

    Get PDF
    We showed previously that NKT cellā€“deficient TCR JĪ±18(āˆ’/āˆ’) mice are more susceptible to methylcholanthrene (MCA)-induced sarcomas, and that normal tumor surveillance can be restored by adoptive transfer of WT liver-derived NKT cells. Liver-derived NKT cells were used in these studies because of their relative abundance in this organ, and it was assumed that they were representative of NKT cells from other sites. We compared NKT cells from liver, thymus, and spleen for their ability to mediate rejection of the sarcoma cell line (MCA-1) in vivo, and found that this was a specialized function of liver-derived NKT cells. Furthermore, when CD4(+) and CD4(āˆ’) liver-derived NKT cells were administered separately, MCA-1 rejection was mediated primarily by the CD4(āˆ’) fraction. Very similar results were achieved using the B16F10 melanoma metastasis model, which requires NKT cell stimulation with Ī±-galactosylceramide. The impaired ability of thymus-derived NKT cells was due, in part, to their production of IL-4, because tumor immunity was clearly enhanced after transfer of IL-4ā€“deficient thymus-derived NKT cells. This is the first study to demonstrate the existence of functionally distinct NKT cell subsets in vivo and may shed light on the long-appreciated paradox that NKT cells function as immunosuppressive cells in some disease models, whereas they promote cell-mediated immunity in others

    Altered populations of unconventional T Cell lineages in patients with Langerhans Cell Histiocytosis

    Get PDF
    Langerhans cell histiocytosis (LCH) lesions are defined by the presence of CD1a+/CD207+ myeloid cells, but many other immune cells are present including unconventional T cells, which have powerful immunoregulatory functions. Unconventional T cell lineages include mucosal-associated invariant T (MAIT) cells, type I natural killer T (NKT) cells and gamma-delta (Ī³Ī“) T cells, which are associated with many inflammatory conditions, although their importance has not been studied in LCH. We characterized their phenotype and function in blood and lesions from patients with LCH, and identified a deficiency in MAIT cell frequency and abnormalities in the subset distributions of Ī³Ī“ T cells and NKT cells. Such abnormalities are associated with immune dysregulation in other disease settings and are therefore potentially important in LCH. Our study is the first to recognize alterations to MAIT cell proportions in patients with LCH. This finding along with other abnormalities identified amongst unconventional T cells could potentially influence the onset and progression of LCH, thereby highlighting potential targets for new immune based therapies

    Distinct subpopulations of DN1 thymocytes exhibit preferential Ī³Ī“ T lineage potential

    Get PDF
    The Ī±Ī² and Ī³Ī“ T cell lineages both differentiate in the thymus from common uncommitted progenitors. The earliest stage of T cell development is known as CD4-CD8- double negative 1 (DN1), which has previously been shown to be a heterogenous mixture of cells. Of these, only the CD117+ fraction has been proposed to be true T cell progenitors that progress to the DN2 and DN3 thymocyte stages, at which point the development of the Ī±Ī² and Ī³Ī“ T cell lineages diverge. However, recently, it has been shown that at least some Ī³Ī“ T cells may be derived from a subset of CD117- DN thymocytes. Along with other ambiguities, this suggests that T cell development may not be as straightforward as previously thought. To better understand early T cell development, particularly the heterogeneity of DN1 thymocytes, we performed a single cell RNA sequence (scRNAseq) of mouse DN and Ī³Ī“ thymocytes and show that the various DN stages indeed comprise a transcriptionally diverse subpopulations of cells. We also show that multiple subpopulations of DN1 thymocytes exhibit preferential development towards the Ī³Ī“ lineage. Furthermore, specific Ī³Ī“-primed DN1 subpopulations preferentially develop into IL-17 or IFNĪ³-producing Ī³Ī“ T cells. We show that DN1 subpopulations that only give rise to IL-17-producing Ī³Ī“ T cells already express many of the transcription factors associated with type 17 immune cell responses, while the DN1 subpopulations that can give rise to IFNĪ³-producing Ī³Ī“ T cell already express transcription factors associated with type 1 immune cell responses

    Experimental and Human Evidence for Lipocalin-2 (Neutrophil Gelatinase-Associated Lipocalin [NGAL]) in the Development of Cardiac Hypertrophy and heart failure

    Get PDF
    Background-Cardiac hypertrophy increases the risk of developing heart failure and cardiovascular death. The neutrophil inflammatory protein, lipocalin-2 (LCN2/NGAL), is elevated in certain forms of cardiac hypertrophy and acute heart failure. However, a specific role for LCN2 in predisposition and etiology of hypertrophy and the relevant genetic determinants are unclear. Here, we defined the role of LCN2 in concentric cardiac hypertrophy in terms of pathophysiology, inflammatory expression networks, and genomic determinants. Methods and Results-We used 3 experimental models: a polygenic model of cardiac hypertrophy and heart failure, a model of intrauterine growth restriction and Lcn2-knockout mouse; cultured cardiomyocytes; and 2 human cohorts: 114 type 2 diabetes mellitus patients and 2064 healthy subjects of the YFS (Young Finns Study). In hypertrophic heart rats, cardiac and circulating Lcn2 was significantly overexpressed before, during, and after development of cardiac hypertrophy and heart failure. Lcn2 expression was increased in hypertrophic hearts in a model of intrauterine growth restriction, whereas Lcn2-knockout mice had smaller hearts. In cultured cardiomyocytes, Lcn2 activated molecular hypertrophic pathways and increased cell size, but reduced proliferation and cell numbers. Increased LCN2 was associated with cardiac hypertrophy and diastolic dysfunction in diabetes mellitus. In the YFS, LCN2 expression was associated with body mass index and cardiac mass and with levels of inflammatory markers. The single-nucleotide polymorphism, rs13297295, located near LCN2 defined a significant cis-eQTL for LCN2 expression. Conclusions-Direct effects of LCN2 on cardiomyocyte size and number and the consistent associations in experimental and human analyses reveal a central role for LCN2 in the ontogeny of cardiac hypertrophy and heart failure.Peer reviewe
    • ā€¦
    corecore