134 research outputs found
Modeling Growth and Telomere Dynamics in Saccharomyces Cerevisiae
A general branching process is proposed to model a population of cells of the yeast Saccharomyces cerevisiae following loss of telomerase. Previously published experimental data indicate that a population of telomerase-deficient cells regain exponential growth after a period of slowing due to critical telomere shortening. The explanation for this phenomenon is that some cells engage telomerase-independent pathways to maintain telomeres that allow them to become “survivors.” Our model takes into account random variation in individual cell cycle times, telomere length, finite lifespan of mother cells, and survivorship. We identify and estimate crucial parameters such as the probability of an individual cell becoming a survivor, and compare our model predictions to experimental data
Modeling growth and telomere dynamics in saccharomyces cerevisiae
Abstract A general branching process is proposed to model a population of cells of the yeast Saccharomyces cerevisiae following loss of telomerase. Previously published experimental data indicate that a population of telomerase-deficient cells regain exponential growth after a period of slowing due to critical telomere shortening. The explanation for this phenomenon is that some cells engage telomerase-independent pathways to maintain telomeres that allow them to become "survivors." Our model takes into account random variation in individual cell cycle times, telomere length, finite lifespan of mother cells, and survivorship. We identify and estimate crucial parameters such as the probability of an individual cell becoming a survivor, and compare our model predictions to experimental data
Diagnosis and Treatment of Pediatric Acquired Aplastic Anemia (AAA): An Initial Survey of the North American Pediatric Aplastic Anemia Consortium (NAPAAC)
BackgroundRandomized clinical trials in pediatric aplastic anemia (AA) are rare and data to guide standards of care are scarce. ProcedureEighteen pediatric institutions formed the North American Pediatric Aplastic Anemia Consortium to foster collaborative studies in AA. The initial goal of NAPAAC was to survey the diagnostic studies and therapies utilized in AA. ResultsOur survey indicates considerable variability among institutions in the diagnosis and treatment of AA. There were areas of general consensus, including the need for a bone marrow evaluation, cytogenetic and specific fluorescent in situ hybridization assays to establish diagnosis and exclude genetic etiologies with many institutions requiring results prior to initiation of immunosuppressive therapy (IST); uniform referral for hematopoietic stem cell transplantation as first line therapy if an HLA-identical sibling is identified; the use of first-line IST containing horse anti-thymocyte globulin and cyclosporine A (CSA) if an HLA-identical sibling donor is not identified; supportive care measures; and slow taper of CSA after response. Areas of controversy included the need for telomere length results prior to IST, the time after IST initiation defining a treatment failure; use of hematopoietic growth factors; the preferred rescue therapy after failure of IST; the use of specific hemoglobin and platelet levels as triggers for transfusion support; the use of prophylactic antibiotics; and follow-up monitoring after completion of treatment. ConclusionsThese initial survey results reflect heterogeneity in diagnosis and care amongst pediatric centers and emphasize the need to develop evidence-based diagnosis and treatment approaches in this rare disease. Pediatr Blood Cancer 2014;61:869-874. (c) 2013 Wiley Periodicals, Inc
Immunosuppressive therapy for pediatric aplastic anemia: a North American Pediatric Aplastic Anemia Consortium study.
Quality of response to immunosuppressive therapy and long-term outcomes for pediatric severe aplastic anemia remain incompletely characterized. Contemporary evidence to inform treatment of relapsed or refractory severe aplastic anemia for pediatric patients is also limited. The clinical features and outcomes for 314 children treated from 2002 to 2014 with immunosuppressive therapy for acquired severe aplastic anemia were analyzed retrospectively from 25 institutions in the North American Pediatric Aplastic Anemia Consortium. The majority of subjects (n=264) received horse anti-thymocyte globulin (hATG) plus cyclosporine (CyA) with a median 61 months follow up. Following hATG/CyA, 71.2% (95%CI: 65.3,76.6) achieved an objective response. In contrast to adult studies, the quality of response achieved in pediatric patients was high, with 59.8% (95%CI: 53.7,65.8) complete response and 68.2% (95%CI: 62.2,73.8) achieving at least a very good partial response with a platelet count ≥50×109L. At five years post-hATG/CyA, overall survival was 93% (95%CI: 89,96), but event-free survival without subsequent treatment was only 64% (95%CI: 57,69) without a plateau. Twelve of 171 evaluable patients (7%) acquired clonal abnormalities after diagnosis after a median 25.2 months (range: 4.3-71 months) post treatment. Myelodysplastic syndrome or leukemia developed in 6 of 314 (1.9%). For relapsed/refractory disease, treatment with a hematopoietic stem cell transplant had a superior event-free survival compared to second immunosuppressive therapy treatment in a multivariate analysis (HR=0.19, 95%CI: 0.08,0.47; P=0.0003). This study highlights the need for improved therapies to achieve sustained high-quality remission for children with severe aplastic anemia
Segregating YKU80 and TLC1 Alleles Underlying Natural Variation in Telomere Properties in Wild Yeast
In yeast, as in humans, telomere length varies among individuals and is controlled by multiple loci. In a quest to define the extent of variation in telomere length, we screened 112 wild-type Saccharomyces sensu stricto isolates. We found extensive telomere length variation in S. paradoxus isolates. This phenotype correlated with their geographic origin: European strains were observed to have extremely short telomeres (<150 bp), whereas American isolates had telomeres approximately three times as long (>400 bp). Insertions of a URA3 gene near telomeres allowed accurate analysis of individual telomere lengths and telomere position effect (TPE). Crossing the American and European strains resulted in F1 spores with a continuum of telomere lengths consistent with what would be predicted if many quantitative trait loci (QTLs) were involved in length maintenance. Variation in TPE is similarly quantitative but only weakly correlated with telomere length. Genotyping F1 segregants indicated several QTLs associated with telomere length and silencing variation. These QTLs include likely candidate genes but also map to regions where there are no known genes involved in telomeric properties. We detected transgressive segregation for both phenotypes. We validated by reciprocal hemizygosity that YKU80 and TLC1 are telomere-length QTLs in the two S. paradoxus subpopulations. Furthermore, we propose that sequence divergence within the Ku heterodimer generates negative epistasis within one of the allelic combinations (American-YKU70 and European-YKU80) resulting in very short telomeres
The C-terminal extension unique to the long isoform of the shelterin component TIN2 enhances its interaction with TRF2 in a phosphorylation- and dyskeratosis congenita-cluster-dependent fashion
TIN2 is central to the shelterin complex, linking the telomeric proteins TRF1 and TRF2 with TPP1/POT1. Mutations in TINF2, which encodes TIN2, that are found in dyskeratosis congenita (DC) result in very short telomeres and cluster in a region shared by the two TIN2 isoforms, TIN2S (short) and TIN2L (long). Here we show that TIN2L, but not TIN2S, is phosphorylated. TRF2 interacts more with TIN2L than TIN2S, and both the DC-cluster and phosphorylation promote this enhanced interaction. The binding of TIN2L, but not TIN2S, is affected by TRF2-F120, which is also required for TRF2's interaction with end processing factors such as Apollo. Conversely, TRF1 interacts more with TIN2S than with TIN2L. A DC-associated mutation further reduces TIN2L-TRF1, but not TIN2S-TRF1, interaction. Cells overexpressing TIN2L or phosphomimetic-TIN2L are permissive to telomere elongation, whereas cells overexpressing TIN2S or phosphodead-TIN2L are not. Telomere lengths are unchanged in cell lines in which TIN2L expression has been eliminated by CRISPR/Cas9-mediated mutation. These results indicate that TIN2 isoforms are biochemically and functionally distinguishable, and that shelterin composition could be fundamentally altered in patients with TINF2 mutations
Diagnosis and treatment of pediatric acquired aplastic anemia (AAA): An initial survey of the North American Pediatric Aplastic Anemia Consortium (NAPAAC)
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106711/1/pbc24875.pd
- …