121 research outputs found

    A limit on the detectability of the energy scale of inflation

    Get PDF
    We show that the polarization of the cosmic microwave background can be used to detect gravity waves from inflation if the energy scale of inflation is above 3.2 times 10^15 GeV. These gravity waves generate polarization patterns with a curl, whereas (to first order in perturbation theory) density perturbations do not. The limiting ``noise'' arises from the second--order generation of curl from density perturbations, or rather residuals from its subtraction. We calculate optimal sky coverage and detectability limits as a function of detector sensitivity and observing time.Comment: 4 pages, 3 figures, submitted to PR

    Inheritance of porcine receptors for enterotoxigenic Escherichia coli with fimbriae F4ad and their relation to other F4 receptors

    Get PDF
    Enteric Escherichia coli infections are a highly relevant cause of disease and death in young pigs. Breeding genetically resistant pigs is an economical and sustainable method of prevention. Resistant pigs are protected against colonization of the intestine through the absence of receptors for the bacterial fimbriae, which mediate adhesion to the intestinal surface. The present work aimed at elucidation of the mode of inheritance of the F4ad receptor which according to former investigations appeared quite confusing. Intestines of 489 pigs of an experimental herd were examined by a microscopic adhesion test modified in such a manner that four small intestinal sites instead of one were tested for adhesion of the fimbrial variant F4ad. Segregation analysis revealed that the mixed inheritance model explained our data best. The heritability of the F4ad phenotype was estimated to be 0.7±0.1. There are no relations to the strong receptors for variants F4ab and F4ac. Targeted matings allowed the discrimination between two F4ad receptors, that is, a fully adhesive receptor (F4adRFA) expressed on all enterocytes and at all small intestinal sites, and a partially adhesive receptor (F4adRPA) variably expressed at different sites and often leading to partial bacterial adhesion. In pigs with both F4ad receptors, the F4adRPA receptor is masked by the F4adRFA. The hypothesis that F4adRFA must be encoded by at least two complementary or epistatic dominant genes is supported by the Hardy-Weinberg equilibrium statistics. The F4adRPA receptor is inherited as a monogenetic dominant trait. A comparable partially adhesive receptor for variant F4ab (F4abRPA) was also observed but the limited data did not allow a prediction of the mode of inheritance. Pigs were therefore classified into one of eight receptor phenotypes: A1 (F4abRFA/F4acR+/F4adRFA); A2 (F4abRFA/F4acR+/F4adRPA); B (F4abRFA/F4acR+/F4adR−); C1 (F4abRPA/F4acR−/F4adRFA); C2 (F4abRPA/F4acR−/F4adRPA); D1 (F4abR−/F4acR−/F4adRFA); D2 (F4abR−/F4acR−/F4adRPA); E (F4abR−/F4acR−/F4adR−

    DEFROST: A New Code for Simulating Preheating after Inflation

    Full text link
    At the end of inflation, dynamical instability can rapidly deposit the energy of homogeneous cold inflaton into excitations of other fields. This process, known as preheating, is rather violent, inhomogeneous and non-linear, and has to be studied numerically. This paper presents a new code for simulating scalar field dynamics in expanding universe written for that purpose. Compared to available alternatives, it significantly improves both the speed and the accuracy of calculations, and is fully instrumented for 3D visualization. We reproduce previously published results on preheating in simple chaotic inflation models, and further investigate non-linear dynamics of the inflaton decay. Surprisingly, we find that the fields do not want to thermalize quite the way one would think. Instead of directly reaching equilibrium, the evolution appears to be stuck in a rather simple but quite inhomogeneous state. In particular, one-point distribution function of total energy density appears to be universal among various two-field preheating models, and is exceedingly well described by a lognormal distribution. It is tempting to attribute this state to scalar field turbulence.Comment: RevTeX 4.0; 16 pages, 9 figure

    Cosmic Microwave Background anisotropies from second order gravitational perturbations

    Get PDF
    This paper presents a complete analysis of the effects of second order gravitational perturbations on Cosmic Microwave Background anisotropies, taking explicitly into account scalar, vector and tensor modes. We also consider the second order perturbations of the metric itself obtaining them, for a universe dominated by a collision-less fluid, in the Poisson gauge, by transforming the known results in the synchronous gauge. We discuss the resulting second order anisotropies in the Poisson gauge, and analyse the possible relevance of the different terms. We expect that, in the simplest scenarios for structure formation, the main effect comes from the gravitational lensing by scalar perturbations, that is known to give a few percent contribution to the anisotropies at small angular scales.Comment: 15 pages, revtex, no figures. Version to be published in Phys. Rev.

    Newtonian Cosmology in Lagrangian Formulation: Foundations and Perturbation Theory

    Get PDF
    The ``Newtonian'' theory of spatially unbounded, self--gravitating, pressureless continua in Lagrangian form is reconsidered. Following a review of the pertinent kinematics, we present alternative formulations of the Lagrangian evolution equations and establish conditions for the equivalence of the Lagrangian and Eulerian representations. We then distinguish open models based on Euclidean space R3\R^3 from closed models based (without loss of generality) on a flat torus \T^3. Using a simple averaging method we show that the spatially averaged variables of an inhomogeneous toroidal model form a spatially homogeneous ``background'' model and that the averages of open models, if they exist at all, in general do not obey the dynamical laws of homogeneous models. We then specialize to those inhomogeneous toroidal models whose (unique) backgrounds have a Hubble flow, and derive Lagrangian evolution equations which govern the (conformally rescaled) displacement of the inhomogeneous flow with respect to its homogeneous background. Finally, we set up an iteration scheme and prove that the resulting equations have unique solutions at any order for given initial data, while for open models there exist infinitely many different solutions for given data.Comment: submitted to G.R.G., TeX 30 pages; AEI preprint 01

    Position-Space Description of the Cosmic Microwave Background and Its Temperature Correlation Function

    Get PDF
    We suggest that the cosmic microwave background (CMB) temperature correlation function C(theta) as a function of angle provides a direct connection between experimental data and the fundamental cosmological quantities. The evolution of inhomogeneities in the prerecombination universe is studied using their Green's functions in position space. We find that a primordial adiabatic point perturbation propagates as a sharp-edged spherical acoustic wave. Density singularities at its wavefronts create a feature in the CMB correlation function distinguished by a dip at theta ~ 1.2 deg. Characteristics of the feature are sensitive to the values of cosmological parameters, in particular to the total and the baryon densities.Comment: The version accepted for publication in Phys. Rev. Letters. 4 pages, 3 figure

    Crossing the Phantom Divide: Theoretical Implications and Observational Status

    Get PDF
    If the dark energy equation of state parameter w(z) crosses the phantom divide line w=-1 (or equivalently if the expression d(H^2(z))/dz - 3\Omega_m H_0^2 (1+z)^2 changes sign) at recent redshifts, then there are two possible cosmological implications: Either the dark energy consists of multiple components with at least one non-canonical phantom component or general relativity needs to be extended to a more general theory on cosmological scales. The former possibility requires the existence of a phantom component which has been shown to suffer from serious theoretical problems and instabilities. Therefore, the later possibility is the simplest realistic theoretical framework in which such a crossing can be realized. After providing a pedagogical description of various dark energy observational probes, we use a set of such probes (including the Gold SnIa sample, the first year SNLS dataset, the 3-year WMAP CMB shift parameter, the SDSS baryon acoustic oscillations peak (BAO), the X-ray gas mass fraction in clusters and the linear growth rate of perturbations at z=0.15 as obtained from the 2dF galaxy redshift survey) to investigate the priors required for cosmological observations to favor crossing of the phantom divide. We find that a low \Omega_m prior (0.2<\Omega_m <0.25) leads, for most observational probes (except of the SNLS data), to an increased probability (mild trend) for phantom divide crossing. An interesting degeneracy of the ISW effect in the CMB perturbation spectrum is also pointed out.Comment: Accepted in JCAP (to appear). Comments added, typos corrected. 19 pages (revtex), 8 figures. The numerical analysis files (Mathematica + Fortran) with instructions are available at http://leandros.physics.uoi.gr/pdl-cross/pdl-cross.htm . The ppt file of a relevant talk may be downloaded from http://leandros.physics.uoi.gr/pdl-cross/pdl2006.pp

    Gravitational clustering of relic neutrinos and implications for their detection

    Full text link
    We study the gravitational clustering of big bang relic neutrinos onto existing cold dark matter (CDM) and baryonic structures within the flat Λ\LambdaCDM model, using both numerical simulations and a semi-analytical linear technique, with the aim of understanding the neutrinos' clustering properties for direct detection purposes. In a comparative analysis, we find that the linear technique systematically underestimates the amount of clustering for a wide range of CDM halo and neutrino masses. This invalidates earlier claims of the technique's applicability. We then compute the exact phase space distribution of relic neutrinos in our neighbourhood at Earth, and estimate the large scale neutrino density contrasts within the local Greisen--Zatsepin--Kuzmin zone. With these findings, we discuss the implications of gravitational neutrino clustering for scattering-based detection methods, ranging from flux detection via Cavendish-type torsion balances, to target detection using accelerator beams and cosmic rays. For emission spectroscopy via resonant annihilation of extremely energetic cosmic neutrinos on the relic neutrino background, we give new estimates for the expected enhancement in the event rates in the direction of the Virgo cluster.Comment: 38 pages, 8 embedded figures, iopart.cls; v2: references added, minor changes in text, to appear in JCA

    Comparison of Standard Ruler and Standard Candle constraints on Dark Energy Models

    Full text link
    We compare the dark energy model constraints obtained by using recent standard ruler data (Baryon Acoustic Oscillations (BAO) at z=0.2 and z=0.35 and Cosmic Microwave Background (CMB) shift parameters R and l_a) with the corresponding constraints obtained by using recent Type Ia Supernovae (SnIa) standard candle data (ESSENCE+SNLS+HST from Davis et. al.). We find that, even though both classes of data are consistent with LCDM at the 2\sigma level, there is a systematic difference between the two classes of data. In particular, we find that for practically all values of the parameters (\Omega_0m,\Omega_b) in the 2\sigma range of the the 3-year WMAP data (WMAP3) best fit, LCDM is significantly more consistent with the SnIa data than with the CMB+BAO data. For example for (\Omega_0m,\Omega_b)=(0.24,0.042) corresponding to the best fit values of WMAP3, the dark energy equation of state parametrization w(z)=w_0 + w_1 (z/(1+z)) best fit is at a 0.5\sigma distance from LCDM (w_0=-1,w_1=0) using the SnIa data and 1.7\sigma away from LCDM using the CMB+BAO data. There is a similar trend in the earlier data (SNLS vs CMB+BAO at z=0.35). This trend is such that the standard ruler CMB+BAO data show a mild preference for crossing of the phantom divide line w=-1, while the recent SnIa data favor LCDM. Despite of this mild difference in trends, we find no statistically significant evidence for violation of the cosmic distance duality relation \eta \equiv d_L(z)/(d_A(z) (1+z)^2)=1. For example, using a prior of \Omega_0m=0.24, we find \eta=0.95 \pm 0.025 in the redshift range 0<z<2, which is consistent with distance duality at the 2\sigma level.Comment: References added. 9 pages, 7 figures. The Mathematica files with the numerical analysis of the paper can be found at http://leandros.physics.uoi.gr/rulcand/rulcand.ht

    Self-Similarity in General Relativity \endtitle

    Full text link
    The different kinds of self-similarity in general relativity are discussed, with special emphasis on similarity of the ``first'' kind, corresponding to spacetimes admitting a homothetic vector. We then survey the various classes of self-similar solutions to Einstein's field equations and the different mathematical approaches used in studying them. We focus mainly on spatially homogenous and spherically symmetric self-similar solutions, emphasizing their possible roles as asymptotic states for more general models. Perfect fluid spherically symmetric similarity solutions have recently been completely classified, and we discuss various astrophysical and cosmological applications of such solutions. Finally we consider more general types of self-similar models.Comment: TeX document, 53 page
    • …
    corecore