12,313 research outputs found

    Topologically Massive Gauge Theories and their Dual Factorised Gauge Invariant Formulation

    Get PDF
    There exists a well-known duality between the Maxwell-Chern-Simons theory and the self-dual massive model in 2+1 dimensions. This dual description has been extended to topologically massive gauge theories (TMGT) in any dimension. This Letter introduces an unconventional approach to the construction of this type of duality through a reparametrisation of the master theory action. The dual action thereby obtained preserves the same gauge symmetry structure as the original theory. Furthermore, the dual action is factorised into a propagating sector of massive gauge invariant variables and a sector with gauge variant variables defining a pure topological field theory. Combining results obtained within the Lagrangian and Hamiltonian formulations, a new completed structure for a gauge invariant dual factorisation of TMGT is thus achieved.Comment: 1+7 pages, no figure

    Comparing the correlation length of grain markets in China and France

    Full text link
    In economics comparative analysis plays the same role as experimental research in physics. In this paper we closely examine several methodological problems related to comparative analysis by investigating the specific example of grain markets in China and France respectively. This enables us to answer a question in economic history which has so far remained pending, namely whether or not market integration progressed in the 18th century. In economics as in physics, before being accepted any new result has to be checked and re-checked by different researchers. This is what we call the replication and comparison procedures. We show how these procedures should (and can) be implemented.Comment: 16 pages, 7 figures, to appear in International Journal of Modern Physics

    Invariance quantum groups of the deformed oscillator algebra

    Full text link
    A differential calculus is set up on a deformation of the oscillator algebra. It is uniquely determined by the requirement of invariance under a seven-dimensional quantum group. The quantum space and its associated differential calculus are also shown to be invariant under a nine generator quantum group containing the previous one.Comment: 13 pages, Late

    Spin generation away from boundaries by nonlinear transport

    Full text link
    In several situations of interest, spin polarization may be generated far from the boundaries of a sample by nonlinear effects of an electric current, even when such a generation is forbidden by symmetry in the linear regime. We present an analytically solvable model where spin accumulation results from a combination of current gradients, nonlinearity, and cubic anisotropy. Further, we show that even with isotropic conductivity, nonlinear effects in a low symmetry geometry can generate spin polarization far away from boundaries. Finally, we find that drift from the boundaries results in spin polarization patterns that dominate in recent experiments on GaAs by Sih et al. [Phys. Rev. Lett. 97, 096605 (2006)]

    Delocalization transition for the Google matrix

    Full text link
    We study the localization properties of eigenvectors of the Google matrix, generated both from the World Wide Web and from the Albert-Barabasi model of networks. We establish the emergence of a delocalization phase for the PageRank vector when network parameters are changed. In the phase of localized PageRank, a delocalization takes place in the complex plane of eigenvalues of the matrix, leading to delocalized relaxation modes. We argue that the efficiency of information retrieval by Google-type search is strongly affected in the phase of delocalized PageRank.Comment: 4 pages, 5 figures. Research done at http://www.quantware.ups-tlse.fr

    Superintegrability in a two-dimensional space of nonconstant curvature

    Get PDF
    A Hamiltonian with two degrees of freedom is said to be superintegrable if it admits three functionally independent integrals of the motion. This property has been extensively studied in the case of two-dimensional spaces of constant (possibly zero) curvature when all the independent integrals are either quadratic or linear in the canonical momenta. In this article the first steps are taken to solve the problem of superintegrability of this type on an arbitrary curved manifold in two dimensions. This is done by examining in detail one of the spaces of revolution found by G. Koenigs. We determine that there are essentially three distinct potentials which when added to the free Hamiltonian of this space have this type of superintegrability. Separation of variables for the associated Hamilton–Jacobi and Schrödinger equations is discussed. The classical and quantum quadratic algebras associated with each of these potentials are determined

    Thermopower as a Possible Probe of Non-Abelian Quasiparticle Statistics in Fractional Quantum Hall Liquids

    Full text link
    We show in this paper that thermopower is enhanced in non-Abelian quantum Hall liquids under appropriate conditions. This is because thermopower measures entropy per electron in the clean limit, while the degeneracy and entropy associated with non-Abelian quasiparticles enhance entropy when they are present. Thus thermopower can potentially probe non-Abelian nature of the quasiparticles, and measure their quantum dimension.Comment: 5 pages. Minor revisions in response to referee comments. Published versio

    PMI: A Delta Psi(m) Independent Pharmacological Regulator of Mitophagy

    Get PDF
    Mitophagy is central to mitochondrial and cellular homeostasis and operates via the PINK1/Parkin pathway targeting mitochondria devoid of membrane potential (ΔΨm) to autophagosomes. Although mitophagy is recognized as a fundamental cellular process, selective pharmacologic modulators of mitophagy are almost nonexistent. We developed a compound that increases the expression and signaling of the autophagic adaptor molecule P62/SQSTM1 and forces mitochondria into autophagy. The compound, P62-mediated mitophagy inducer (PMI), activates mitophagy without recruiting Parkin or collapsing ΔΨm and retains activity in cells devoid of a fully functional PINK1/Parkin pathway. PMI drives mitochondria to a process of quality control without compromising the bio-energetic competence of the whole network while exposing just those organelles to be recycled. Thus, PMI circumvents the toxicity and some of the nonspecific effects associated with the abrupt dissipation of ΔΨm by ionophores routinely used to induce mitophagy and represents a prototype pharmacological tool to investigate the molecular mechanisms of mitophagy
    corecore