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A Hamiltonian with two degrees of freedom is said to be superintegrable if it
admits three functionally independent integrals of the motion. This property has
been extensively studied in the case of two-dimensional spaces of constant~possi-
bly zero! curvature when all the independent integrals are either quadratic or linear
in the canonical momenta. In this article the first steps are taken to solve the
problem of superintegrability of this type on an arbitrary curved manifold in two
dimensions. This is done by examining in detail one of the spaces of revolution
found by G. Koenigs. We determine that there are essentially three distinct poten-
tials which when added to the free Hamiltonian of this space have this type of
superintegrability. Separation of variables for the associated Hamilton–Jacobi and
Schrödinger equations is discussed. The classical and quantum quadratic algebras
associated with each of these potentials are determined. ©2002 American Insti-
tute of Physics.@DOI: 10.1063/1.1429322#

I. INTRODUCTION

A Hamiltonian system in classical mechanics withn degrees of freedom is described by
Hamiltonian functionH(x1 ,...,xn ,p1 ,...,pn)5H(x,p). The dynamics of such a system is d
scribed by Hamilton’s equations

ẋi5
]H

]pi
, ṗi52

]H

]xi
. ~1!

The time rate of change of a classical observablel 5l (x,p) is given by

dl

dt
5$l ,H%5(

i 51

n S ]l

]xi

]H

]pi
2

]l

]pi

]H

]xi
D , ~2!

where$,% is the Poisson bracket. A Hamiltonian system is called ‘‘Liouville integrable’’ if it adm
n functionally independent integrals of motion$X1 ,...,Xn% which are mutually in involution, i.e.,

$Xi ,Xj%50, i , j 51,...,n, ~3!

where one of these constants can be taken to be the HamiltonianH.1,2 The system is superinte
grable if a furtherm integrals$Y1 ,...,Ym,1<m<n21% exist such that the set of constants$X1

5H,X2 ,...,Xn ,Y1 ,...,Ym% is functionally independent. The additional integrals have vanish
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Poisson bracket withH, but not necessarily with each other or with theXi ’s. A classical Hamil-
tonian system is maximally superintegrable ifm5n21. There are then 2n21 functionally inde-
pendent integrals of motion. The concepts of complete integrability and superintegrability
their analog in quantum mechanics. In this case a superintegrable quantum mechanical sy
described byn1m quantum observables$X̂15Ĥ,X̂2 ,...,X̂n ,Ŷ1 ,...,Ŷm% which satisfy the com-
mutation relations

@Ĥ,X̂i #5ĤX̂i2X̂i Ĥ50, @Ĥ,Ŷj #50, @X̂i ,X̂k#50, ~4!

where i ,k51,...,n, j 51,...,m. For superintegrable classical Hamiltonian systems it is often
case that the elements of our set of constants are polynomial in the canonical momenta. T
known maximally superintegrable systems in Euclidean spaceEn are the Kepler problem and th
harmonic oscillator. All finite~bounded! trajectories in these two systems are closed. Moreo
these are the only spherically symmetric potentials for which all finite trajectories are close3

Systematic studies of superintegrable systems have been conducted for spaces of c
curvature in two and three dimensions.4–10 In particular, a complete classification of all superi
tegrable systems in the real Euclidean spacesE2 and E3 with at most second order integrals o
motion was given.4–8 More recently, a relation between superintegrable systems and gener
Lie symmetries has been established,11 as well as their relation to exactly solvable problems
quantum mechanics.12 Recently13–15 it has been possible to classify all maximally superintegra
systems for spaces of constant curvature~possibly zero! in two dimensions for which all the extra
constants of the motion are at most quadratic in the canonical momenta.

A natural question to ask is whether the concept of superintegrability is restricted to spa
constant curvature. The purpose of this article is to show that this is not so and to start a st
superintegrable systems in more general Riemannian, pseudo-Riemannian and complex R
ian spaces. More specifically, we consider real two-dimensional spaces and search for Ham
systems allowing additional constants of the motion that are at most quadratic in the mom

To make initial progress on this problem we first need to know which Riemannian spac
two dimensions have associated with them more than one classical quadratic constant
motion. This is a problem that has been comprehensively solved by Koenigs16 in a note written in
Vol. IV of the treatise of Darboux.17

In addition to being of intrinsic interest, additional motivation for this problem comes f
the observation that all two-dimensional Riemannian spaces can be embedded in the
dimensional Euclidean or pseudo-Euclidean space. Consequently, any such two-dimension
sical motion is equivalent to a constrained motion in three dimensions. It is also possib
interpret the motion, via general relativity, as motion in a two-dimensional gravitational field

Given that we have a Riemannian space in two dimensions with infinitesimal distance

ds25gi j ~u!duiduj , i , j 51,2, ~5!

andu5(u1,u2), the classical Hamiltonian has the form

H5 1
2 gi j pipj1V~u! ~6!

and the corresponding Schro¨dinger equation can be taken to have the form

ĤC52
1

2Ag
]ui~Aggik]ukC!1V~u!C5EC, ~7!

whereg5det(gij). For the classical HamiltonianH our problem is to look for potentialsV(u) and
Riemannian spaces specified by the metricgi j for which there are at least two extra functional
independent constants of the motion of the form

l15ai j ~u!pipj1b~u! ~8!
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or

l25ai~u!pi1c~u!, ~9!

other thanH. One well known way of solving the corresponding classical problem is to
Hamilton–Jacobi theory. The crucial equation to solve is then the Hamilton–Jacobi equ
obtained from the equationH5E via the substitutionpi5]S/]ui , that is,

H5
1

2
gi j

]S

]ui

]S

]uj 1V~u!5E. ~10!

This equation is sometimes solvable by the method of separation of variables using the a
separation ansatz

S5S1~u1,a,E!1S2~u2,a,E!. ~11!

The corresponding Schro¨dinger equation can also be solved by separation of variables with
product ansatz

C5c1~u1,l,E!c2~u2,l,E!. ~12!

The quantitiesl i are constants of the motion if

$l i ,H%50. ~13!

For l2 this implies thatai(u) is a Killing vector andai(u)pi is a symmetry of the free Hamil
tonian@H without V(u)#. In the case ofl1 this implies thatai j (u) is a Killing tensor. Such tensor
are directly related to the notion of additive separation as described above. We note th
constants of the typel2 , the condition impliesc(u)50. It is also clear that for every constan
linear in the momenta, its square is a constant quadratic in the momenta, that is, of the forml1 .

As mentioned earlier, Darboux and Koenigs have given a comprehensive analysis of w
two-dimensional Riemannian space admits more than one quadratic constant. In Sec. II w
marize some of these results.16,17 In the remaining sections we concentrate on a particular sp
with a Killing vector and two Killing tensors. Section III deals with the free Hamilton–Jac
equation and we show that the Schro¨dinger equation allows separation of variables in th
different coordinates systems which we determine explicitly. Potentials that allow separat
variables in these systems are then introduced. In Sec. IV we find all potentials with this
integrability property. We then discuss in Sec. V the various surfaces that may be represen
the infinitesimal distances that we have and the consequent special functions that arise fr
corresponding Schro¨dinger equation.

II. ON GEODESICS WITH QUADRATIC INTEGRALS

In 1889 G. Koenigs16 wrote a note in the last volume of Darboux’s treatise ‘‘The´orie générale
de surfaces,’’ the title of which coincides with the title of this section. This note contai
summary of results which are the solution of the problem outlined in the Introduction, viz. w
does the free Hamiltonian of a two-dimensional Riemannian space admit more than one qu
constant of the motion. The analysis was performed over the field of complex numbers and
be modified over the reals. What Koenigs did was to write the infinitesimal distance for a ge
two-dimensional Riemannian space in the form

ds254 f ~x,y!dxdy. ~14!

This can always be done in two dimensions overC. The corresponding free Hamiltonian then h
the form
23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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H5
1

2 f ~x,y!
pxpy . ~15!

By making the requirement that there is a second order Killing tensor of the form

l5ai j ~u!pipj , ~16!

Darboux and Koenigs establish the following propositions.

~1! Any two-dimensional Riemannian space that admits more than one Killing vector must
space of constant curvature and admit three linearly independent Killing vectors.

~2! Any two-dimensional Riemannian space that admits more than three Killing tensors is a
of constant curvature. It then actually admits five linearly independent Killing tensors w
are all bilinear expressions in the Killing vectors. The sixth bilinear combination is the Ha
tonian itself.

~3! Any two-dimensional Riemannian space that admits precisely three linearly independen
ing tensors will be a Riemannian space of revolution. In fact, there will be one Killing ve
and two Killing tensors.

Two-dimensional Riemannian spaces of this latter type were distinguished to be of four
The infinitesimal distances of these types are given by

~I! ds25(x1y)dxdy,
~II ! ds25(a/(x2y)2 1b)dxdy,
~III ! ds25(ae2 (x1y)/21be2x2y)dxdy,
~IV ! ds25 (a(e(x2y)/21e(y2x)/2)1b)/(e(x2y)/22e(y2x)/2)2 dxdy.

It is the first of these infinitesimal distances that we analyze in some detail in the next sectio
shall call the spaces ‘‘Darboux spaces’’ and denote them byD1 , D2 , D3 andD4 , respectively.

III. THE FREE PARTICLE AND SEPARATION OF VARIABLES IN A DARBOUX SPACE
OF TYPE ONE

If we consider the first space of Darboux’s list and look at real forms of this space only
convenient to make the new choice of variables

x5u1 iv, y5u2 iv. ~17!

The corresponding infinitesimal distance can then be taken as

ds252u~du21dv2!, ~18!

and the corresponding Hamiltonian has the form

H5
1

4u
~pu

21pv
2!. ~19!

Associated with this Hamiltonian are three integrals of the free motion, two quadratic an
linear:

K5pv , X15pupv2
v

2u
~pu

21pv
2!,

~20!

X25pv~vpu2upv!2
v2

4u
~pu

21pv
2!.

These three integrals satisfy the polynomial Poisson algebra relations,
23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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$K,X1%52H, $K,X2%52X1 , $X1 ,X2%52K3. ~21!

They cannot be functionally independent and, in fact, satisfy the relation

4HX21X1
21K450. ~22!

For the analogous quantum problem it is sufficient to consider the operators

Ĥ52
1

4u
~]u

21]v
2!, K̂52 i ]v ,

~23!

X̂152]u]v1
v

2u
~]u

21]v
2!, X̂252

1

2
@]v ,v]u2u]v#11

v2

4u
~]u

21]v
2!,

where@A,B#15AB1BA. The quantum versions of the quadratic constants are obtained vi
formula

l̂52
1

Ag
] i~ai jAg] j !. ~24!

These operators have the same commutation relations as for the classical constants w
Poisson bracket replaced by the commutator bracket:

@K̂,X̂1#52iĤ , @K̂,X̂2#52 iX̂1 , @X̂1 ,X̂2#522iK̂ 3. ~25!

There is also the operator relation

4ĤX̂21X̂1
21K̂450. ~26!

The question we address in this section relates to the various possible ways that separa
variables can be achieved in the case of free classical motion or its quantum analogue, t
Schrödinger equation. The criteria for this to occur is the same in either case. Classically,
have a general quadratic first integrall and free Hamiltonian

H5 1
2 gi j ~u!pipj , ~27!

and if the characteristic equation,

uai j 2rgi j u50, ~28!

has two distinct rootsr1 andr2 , the Hamiltonian will have Liouville form when written in term
of the new variablesr1 , r2 . That is,

H5
s~r1!pr1

2 1t~r2!pr2

2

r11r2
. ~29!

In this form, both classical and quantum systems can be solved by the separation of va
ansatz.

If we want to classify all different separable coordinate systems for a given Hamiltonian
need to know how many essentially different quadratic first integrals are possible. To decide
notion of equivalence we first observe that the variablev does not explicitly appear in the metri
tensor, that is, it is an ignorable variable. This means that the transformationsv→v1b form a
23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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one-dimensional Lie group. Accordingly, we determine the notion of equivalence to mean th
quadratic integrals are equivalent if they are related by a motion of this group. Consequen
most general quadratic constant can be written

l5aX11bX21cK2 ~30!

to within the addition of a multiple ofH. The second order elementsXi transform under the
adjoint action according to

Xi→exp~aK !Xi exp~2aK !5exp~aAd~K !!Xi5Xi1a$K,Xi%1 1
2 a2$K,$K,Xi%%1..., ~31!

or specifically

X1→X112aH, X2→X22aX12a2H. ~32!

There are three classes of possible quadratic first integrals under this equivalence relation.
representatives are

X11aK2, X21aK2, K2. ~33!

We can now explicitly demonstrate the separable coordinates in each of these cases.
~1! Separating coordinates associated with X11aK2. If we choose a representative to be

L5X11sinhc K2, ~34!

the corresponding roots of the characteristic equation and hence new variables are

r 5r1522~Cu1v !, s5r25
2

C
~u2Cv !, C5e2c. ~35!

In terms of these coordinates the Hamiltonian has the form

H5
2~C211!2

C~s2r ! S 1

C2 ps
21pr

2D , ~36!

and the corresponding quadratic constant in these coordinates is

L52
~C211!2

C~s2r ! S r

C2 ps
21spr

2D . ~37!

~2! Separating coordinates associated with X21aK2. Taking the second representative in t
list ~33!, that is,L5X21aK2, a convenient choice of new variablesj, h is related to the rootsr i

by

r15h2~2a2h2!, r252j2~2a1j2!. ~38!

The corresponding classical Hamiltonian then has the form

H5
pj

21ph
2

2~j21h2!~j22h212a!
. ~39!

The associated constant of the motion in the new coordinatesj andh is

L5
h2~2a2h2!pj

22j2~j212a!ph
2

2~j21h2!~j22h212a!
. ~40!
23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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The defining coordinatesu,v are written in terms of the new coordinatesj,h via

u5 1
2 ~j22h2!1a, v5jh, ~41!

which looks like displaced parabolic coordinates in theu,v plane.
~3! Separating coordinates associated with K2. For the last representative,K2, we need only

the coordinatesu,v and to recognize the fact thatK5pv .
We conclude this section by discussing the solutions to the free particle and free Schro¨dinger

equation in these three cases.
In case 1 above it is more convenient to choose the variables according to

u5r cosu1s sinu, v52r sinu1s cosu. ~42!

The classical Hamilton–Jacobi equation then has the form

H5
~]S/]r !21~]S/]s!2

4~r cosu1s sinu!
5E, ~43!

which has the general separable solution

S5S1~r !1S2~s!5
~4Er cosu2l!3/2

6E cosu
1

~4Essinu1l!3/2

6E sinu
. ~44!

The corresponding free Schro¨dinger equation

ĤC52
1

4~r cosu1s sinu!
~] r

21]s
2!C5EC ~45!

has the typical product solutions

C5AS r 2
m

4E cosu D S s1
m

4E sinu DC1/3S 2

3
A4E cosuS r 2

m

4E cosu D 3/2D
3C1/3S 2

3
A4E sinuS s1

m

4E sinu D 3/2D , ~46!

whereCn(z) is a solution of Bessel’s equation.
In the second case the classical Hamilton–Jacobi equation is

H5
~]S/]j!21~]S/]h!2

2~j21h2!~j22h212c!
5E ~47!

and has a general solution of the form

S5E A2Ej412Ecj22ldj1E A22Eh412Ech21ldh, ~48!

which can be expressed in terms of elliptic integrals. The corresponding Schro¨dinger equation has
a solution of the formC5c1(j)c2(h), where thec i satisfy

~]j
212Ej414Ecj21l!c1~j!50,

~49!
~]h

222Eh414Ech22l!c2~h!50.

These equations are readily identified as the equations for the anharmonic oscillator.
23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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In the third case the classical Hamilton-Jacobi equation is

H5
1

4u S S ]S

]uD 2

1S ]S

]v D 2D5E, ~50!

which has separable solutions

S5
1

6E
~4Eu2k2!3/21kv. ~51!

The separable solutions to the corresponding free Schro¨dinger equation

2
1

4u
~]u

21]v
2!C5EC ~52!

have the form

C5Au2
m2

4E
C1/3S 2

3
A4ES u2

m2

4ED 3/2Deimv. ~53!

It is clear that the actual solutions to the classical motion or the corresponding Schro¨dinger
equation depend on the range of values assumed by the various real variables, that is, on
which real manifold we are considering.

IV. INTEGRABLE AND SUPERINTEGRABLE SYSTEMS FOR THE DARBOUX SPACE OF
TYPE ONE

In this section we address the problem of superintegrability for the Hamiltonian

H5
1

4u
~pu

21pv
2!, ~54!

that is, look for potentialsV(u,v) for which

H̄5H1V~u,v ! ~55!

admits at least two extra quadratic integrals. The way to solve this problem is as follows. Fi
consider that we already have one quadratic first integral

L̄5a~u,v !pu
21b~u,v !pupv1c~u,v !pv

21d~u,v !. ~56!

We know that the quadratic part ofL̄ @i.e., that part obtained by puttingd(u,v)50 in ~56!# must
correspond to one of the three possibilities outlined in the previous section. For each of
possibilities separation of variables is possible in coordinatesa,b where u5u(a,b), v
5v(a,b). The addition of a potential implies that separation is preserved. As a conseque
this, H̄ can be written as

H̄5
pa

21pb
21 f ~a!1g~b!

s~a!1t~b!
~57!

and the corresponding first integral will be

L̄5
s~a!~pb

21g~b!!2t~b!~pa
21 f ~a!!

s~a!1t~b!
. ~58!
23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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The next step is to impose the condition that there is a further quadratic first integral and se
conditions this imposes on the functionsf (a) and g(b). If we do these calculations systema
cally, we arrive at the following three cases.

~1!

H5
pu

21pv
2

4u
1

b1~4u21v2!

4u
1

b2

u
1

b3

uv2 . ~59!

The additional constants of the motion have the form

R15X22
b1v4

4u
2

b2v2

u
2

b3~4u21v2!

v2u
, R25K21b1v21

4b3

v2 ~60!

and the corresponding quadratic algebra18,19 relations are determined by

$R,R1%58HR116R2
2116b2R2232b1b3 ,

$R,R2%528HR2216b1R1 , ~61!

R25216HR1R224R2
3216b2R2

2264b3H2216b1R1
2164b1b3R21256b1b2b3 ,

whereR5$R1 ,R2%. The Hamiltonian clearly separates in the coordinatesu andv as well as the
coordinatesj,h given byu5 1

2(j
22h2)1a, v5jh. This can be seen from the explicit form

H5
pj

21ph
2

2~j21h2!~j22h212a!
1

b1~~j22h212a!21j2h2!14b21 ~4b3 /j2h2!

2~j22h212a!
. ~62!

The corresponding quadratic quantum algebra relations are

@R̂,R̂1#526R̂2
228ĤR̂1116b2R̂212b1~3116b3!,

@R̂,R̂2#58ĤR̂2216b1R̂1 , ~63!

R̂2514R̂2
328Ĥ@R̂1 ,R̂2#1216b2R̂2

2216b1R̂1
224b1~11116b3!R̂2

24~3116b3!Ĥ2116b1b2~3116b3!,

whereR̂5@R̂1 ,R̂2#.
~2!

H5
pu

21pv
2

4u
1

a1

u
1

a2v
u

1
a3~u21v2!

u
. ~64!

The additional constants of the motion have the form

R15X12
2a1v

u
1

2a2~u22v2!

u
1

2a3v~u22v2!

u
,

~65!
R25K214a2v14a3v2,

and the corresponding quadratic algebra relations are determined by

$R,R1%528H2116a3R218~a2
214a1a3!,
23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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$R,R2%516a2H216a3R1 , ~66!

R2516H2R2216a3R2
2132a2HR1216a3R1

2216~a2
214a1a3!R2264a1a2

2.

If we change the coordinates according tou5r cosu1ssinu, v52r sinu1scosu, the Hamil-
tonian assumes the form

H5
pr

21ps
214a114a2~2r sinu1s cosu!14a3~r 21s2!

4~r cosu1s sinu!
, ~67!

which clearly also separates in these coordinates.
The commutation relations of the corresponding quantum algebra are

@R̂,R̂1#516a3R̂218Ĥ228~a2
214a1a3!,

@R̂,R̂2#5216a3R̂1116a2Ĥ, ~68!

R̂25216a3R̂2
2216a3R̂1

2116Ĥ2R̂2132a2ĤR̂1216~a2
214a1a3!R̂2164~a3

22a1a2
2!.

~3! The third potential gives rise to a Hamiltonian of the form

H5
pu

21pv
2

4u
1

a

u
. ~69!

There are three extra constants associated with this Hamilonian,

R15X12
2av

u
, R25X22

av2

u
and K. ~70!

The associated Poisson bracket relations are

$K,R1%52H, $K,R2%52R1 , $R1 ,R2%52K~K212a!, ~71!

and the corresponding functional relation among these constants is

4HR21R1
21K414aK250. ~72!

The commutation relations associated with the corresponding quantum problem have the

@K̂,R̂1#52iĤ , @K̂,R̂2#52 iR̂1 , @R̂1 ,R̂2#522iK̂ ~K̂222a!, ~73!

and the identity amongst the defining operators is

4ĤR̂21R̂1
21K̂424aK̂250. ~74!

Upon examination of the various superintegrable potentials we have constructed, we s
by multiplying the equationH5E by a suitable factor we essentially recover a variant of one
the superintegrable systems already classified for spaces of constant~or zero! curvature. For the
first potential above, the equationH5E may be written

pu
21pv

21b1~4u21v2!14b21
4b3

v2 24Eu50. ~75!

This equation is known to have separable solutions in coordinatesu, v and associated paraboli
coordinatesj,h given byu5 1

2(j
22h2), v5jh. With the second potential,H5E becomes
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pu
21pv

214a3~u21v2!14a114a2v24Eu50, ~76!

and the third becomes

pu
21pv

224Eu14a50. ~77!

This observation is crucial to the whole program that we will undertake which aims at findin
superintegrable systems associated with a curved space in two dimensions and having q
constants.

All three of the above systems are special cases of the superintegrable systems fo
E2 .4,11 They were shown to be exactly solvable in Ref. 12.

V. EMBEDDINGS OF A DARBOUX SPACE OF REVOLUTION OF TYPE ONE

It is clear that the infinitesimal distance

ds252u~du21dv2! ~78!

does not uniquely determine a manifold. This then gives rise to the question of just what s
surfaces can this infinitesimal distance represent. A particular choice of such a surface
determine the range of variation of the parametersu, v which in turn enables the solution of th
geodesic equations in the case of classical mechanics and the quantum mechanics of
particle. It is known that any two-dimensional Riemannian space can be embedded in a
dimensional Euclidean space of indefinite or definite signature. In this section we look at a n
of natural embeddings and discuss their associated geodesics and quantum mechanics. Th
tesimal distance that we are dealing with can be embedded in three-dimensional Euclidea
E3 via the formulas

X5A2u cosv, Y5A2u sinv, ~79!

Z5
&

3 S FS w,
1

&
D 1A4u32uD , ~80!

whereu> 1
2, v0<v<2p1v0 , sinw5A2u11 andF(w,k) is an elliptic integral of the first kind.

This embedding gives the infinitesimal distance

dX21dY21dZ252u~du21dv2!. ~81!

To do quantum mechanics on this surface let us first look for separable solutions to th
Schrödinger equation. A typical solution has already been found in the previous section, viz

C5Au2
m2

4E
C1/3S 2

3
A4ES u2

m2

4ED 3/2Deimv, ~82!

wherem is an integer. Asu> 1
2 and we see thatu5 1

2 is not a singular point of the separab
equation inu, we can impose a condition of the form

aC~ 1
2 ,v !1bCu~ 1

2 ,v !50 ~83!

together with the periodic boundary conditionC(u,v)5C(u,v12p), which is already satisfied
If we takea51, b50, thenE>0, otherwise there is no solution satisfying the boundary condi
at u5 1

2. If E>0, then we can find a suitably behaved solution that vanishes asu→` and satisfies
the boundary condition atu5 1

2, viz.

C5~UU8!1/2~J1/3~U !J2 1/3~U8!2J1/3~U8!J2 1/3~U !!, ~84!
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whereU5 2
3A4E(u2 m2/4E)3/2 andU85 2

3A4E( 1
22 m2/4E)3/2. These solutions are the analog

the scattering states on this manifold subject to the boundary condition we have adopted.
An interesting embedding in pseudo-Euclidean space is given by

X5A2uv, Y5Au~ 4
5 u22v21 1

2!, T5Au~ 4
5 u22v22 1

2!, ~85!

for which dX21dY22dT252u(du21dv2). In this case the variables vary over the ranges2`
,v,`, 0<u,`. We could indeed do an analysis of the free Schro¨dinger equation on this
surface and come to a similar conclusion if we imposed the condition that the wave funct

zero atu50. However, if we consider the first potential~59! and chooseb152b2, b35 1
4(

1
4

2g2) for real b and g>0, and if we write the solutions to Schro¨dinger’s equation in the form
C5U(u)V(v), then two independent solutions of the separation equation satisfied byV can be
taken as

V65expS 2
1

2
bv2D v6g11/2

1F1S 1

2
~16g!2

m

b
,16g,bv2D . ~86!

If we wish to interpret these solutions as being associated with an angle variable which va
the range 0,v0<v<v012p, then we would require the periodic boundary conditions

V~v0!5V~v012p!, V8~v0!5V8~v012p!. ~87!

The possibility of imposing these boundary conditions depends on whetherv50 occurs inside the
domain ofv. If it does not, then the spectrum is determined from the condition

W@V1~x!2V1~x12p!,V2~x!2V2~x12p!#ux5v0
50. ~88!

If v50 is included, then the same conditions no longer work as this is a regular singular po
the equation. Indeed, ifv050 and we assumeg. 1

2, then we choose the solutionV1 and impose
the condition

V1~2p!50 ~89!

asV1(0) is already zero. The quantization condition is then determined by

1F1S 1

2
~11g!2

m

b
,11g,4bp2D50. ~90!

For theu separation equation the range of variation of the variableu. 1
2 is clear andu5 1

2 is not
a singularity of the the separation equation. We can accordingly take typical solutions to b

U6~u!5a1DnS 2AbS u2
E

2b2D D1a2DnS 22AbS u2
E

2b2D D , ~91!

wheren5 (1/4b) (E2/b2 14b22m)2 1
2. To obtain a solution that vanishes asu→` requires that

a250. The remaining boundary condition becomes

DnS 2AbS 1

2
2

E

2b2D D50. ~92!

This condition determines the nature of the discrete spectrum. For large eigenvalues the d
spectrum is given by

E>22Ab3n ~93!
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for suitable large integern.
If we consider the second potential~64!, then puttinga352a2 the equation forV(v) has

solutions of the form

V5d1DnS 2AaS v2
a2

2a2D D1d2DnS 22AaS v2
a2

2a2D D5d1V11d2V2 , ~94!

where

n5
1

4a S 4m1
a2

2

a2D 2
1

2
. ~95!

As there are no singularities inv in this equation and we can require thatw0<v<w012p,

V~w0!5V~w012p!, V8~w0!5V8~w012p!, ~96!

which is equivalent to

W@V1~x!2V1~x12p!,V2~x!2V2~x12p!#ux5w0
50. ~97!

The solutions for the functionU(u) that are well behaved for largeu are

U~u!5DrS 2AaS u2
E

2b2D D , ~98!

wherer5 (1/4b) (4a124m1 E2/a2)2 1
2.

VI. CONCLUSION

In this article we have examined one of the four spaces of revolution listed by Koenigs.16 For
the space that we have considered, it has been shown that there are three potentials tha
added to give superintegrable Hamiltonian systems of the type we seek. In each of these c
have exhibited the various inequivalent ways in which a separation of variables can be ac
for both the classical and quantum equations that result. This is equivalent to determinin
various inequivalent ways in which a Hamiltonian can be written in Liouville form~57! for
suitable separable coordinatesa, b. In particular, we note that each of the three superintegra
systems we have examined are such that when we write out the classical equationH5E and factor
out the denominator we recover a variant of a superintegrable system corresponding to flat4

This is an example of what is called coupling-constant metamorphosis.20 It has been proven in
Ref. 12 that all of the superintegrable systems in the plane are such that the bound state e
can be calculated algebraically. In all cases the Hamiltonian lies in the enveloping alge
sl(3,R). We conclude that analogous statements apply to the superintegrable systems that w
found.
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