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A Hamiltonian with two degrees of freedom is said to be superintegrable if it
admits three functionally independent integrals of the motion. This property has
been extensively studied in the case of two-dimensional spaces of cofiasi

bly zerg curvature when all the independent integrals are either quadratic or linear
in the canonical momenta. In this article the first steps are taken to solve the
problem of superintegrability of this type on an arbitrary curved manifold in two
dimensions. This is done by examining in detail one of the spaces of revolution
found by G. Koenigs. We determine that there are essentially three distinct poten-
tials which when added to the free Hamiltonian of this space have this type of
superintegrability. Separation of variables for the associated Hamilton—Jacobi and
Schralinger equations is discussed. The classical and quantum quadratic algebras
associated with each of these potentials are determine@0@ American Insti-

tute of Physics.[DOI: 10.1063/1.1429322

I. INTRODUCTION

A Hamiltonian system in classical mechanics wittdegrees of freedom is described by a
Hamiltonian functionH(X4,...Xn,P1,---,Pn) =H(X,p). The dynamics of such a system is de-
scribed by Hamilton's equations

. H  H .
Xi=35 pi= % 1)

The time rate of change of a classical observabte/ (x,p) is given by
d/ oy _é o/ oH 3/ oM X
dt =7 }_i:1 ax; dp; - Ip; 9X;)’ @

where{,} is the Poisson bracket. A Hamiltonian system is called “Liouville integrable” if it admits
n functionally independent integrals of moti¢K,,..., X} which are mutually in involution, i.e.,

(X, X;}=0, i,j=1,...n, &)

where one of these constants can be taken to be the HamiltbhizThe system is superinte-
grable if a furthem integrals{Y,,...,Yn,1<m=n-—1} exist such that the set of constafi$,
=H,X,,....X,,Y1,....Yq} is functionally independent. The additional integrals have vanishing
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Poisson bracket witlid, but not necessarily with each other or with tkgs. A classical Hamil-

tonian system is maximally superintegrablerit=n—1. There are thenr2— 1 functionally inde-
pendent integrals of motion. The concepts of complete integrability and superintegrability have
their analog in quantum mechanics. In this case a superintegrable quantum mechanical system is
described byn+m quantum observableX;=H,X,,....X,,Y1,...,Y,,} which satisfy the com-
mutation relations

[H.X]=HX;—X;H=0, [H,Y;]=0, [X,X,]=0, 4

wherei,k=1,...n, j=1,..m. For superintegrable classical Hamiltonian systems it is often the
case that the elements of our set of constants are polynomial in the canonical momenta. The best
known maximally superintegrable systems in Euclidean sgacare the Kepler problem and the
harmonic oscillator. All finite(boundedl trajectories in these two systems are closed. Moreover,
these are the only spherically symmetric potentials for which all finite trajectories are &losed.

Systematic studies of superintegrable systems have been conducted for spaces of constant
curvature in two and three dimensichg? In particular, a complete classification of all superin-
tegrable systems in the real Euclidean spd€gsnd E5 with at most second order integrals of
motion was giveri~® More recently, a relation between superintegrable systems and generalized
Lie symmetries has been establisié@s well as their relation to exactly solvable problems in
quantum mechanic€.Recently*~°it has been possible to classify all maximally superintegrable
systems for spaces of constant curvatiessibly zerpin two dimensions for which all the extra
constants of the motion are at most quadratic in the canonical momenta.

A natural question to ask is whether the concept of superintegrability is restricted to spaces of
constant curvature. The purpose of this article is to show that this is not so and to start a study of
superintegrable systems in more general Riemannian, pseudo-Riemannian and complex Riemann-
ian spaces. More specifically, we consider real two-dimensional spaces and search for Hamiltonian
systems allowing additional constants of the motion that are at most quadratic in the momenta.

To make initial progress on this problem we first need to know which Riemannian spaces in
two dimensions have associated with them more than one classical quadratic constant of the
motion. This is a problem that has been comprehensively solved by Ko&itigsnote written in
\ol. IV of the treatise of DarbouX’

In addition to being of intrinsic interest, additional motivation for this problem comes from
the observation that all two-dimensional Riemannian spaces can be embedded in the three-
dimensional Euclidean or pseudo-Euclidean space. Consequently, any such two-dimensional clas-
sical motion is equivalent to a constrained motion in three dimensions. It is also possible to
interpret the motion, via general relativity, as motion in a two-dimensional gravitational field.

Given that we have a Riemannian space in two dimensions with infinitesimal distance

ds?=g;(uydudd, i,j=1.2, ©)

andu=(u',u?), the classical Hamiltonian has the form

H=3g"pip;+V(u) (6)
and the corresponding Scldinger equation can be taken to have the form

. 1 i
AW = — —— a,(Vgg*a,W) + V(U)W =EW, (@)

2y

whereg=det(g;). For the classical Hamiltoniald our problem is to look for potential¢(u) and
Riemannian spaces specified by the meggjcfor which there are at least two extra functionally
independent constants of the motion of the form

A=a'l(u)p;p;+b(u) 8
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or
Np=al(u)p;+c(u), €)

other thanH. One well known way of solving the corresponding classical problem is to use
Hamilton—Jacobi theory. The crucial equation to solve is then the Hamilton—Jacobi equation
obtained from the equatiod =E via the substitutiorp,=4S/du', that is,

H—1 5 95 aS+v =E 10

~29 G g PVWTE 10

This equation is sometimes solvable by the method of separation of variables using the additive
separation ansatz

S=S,(ut,a,E)+ Sy(u?,a,E). (11

The corresponding Schdinger equation can also be solved by separation of variables with the
product ansatz

W=y (U N E) ho(U2,\E). (12
The quantities\; are constants of the motion if
{\i,H}=0. (13)

For \, this implies thata'(u) is a Killing vector anda'(u)p; is a symmetry of the free Hamil-
tonian[H without V(u)]. In the case of ; this implies thag'/ (u) is a Killing tensor. Such tensors
are directly related to the notion of additive separation as described above. We note that for
constants of the type,, the condition impliexc(u)=0. It is also clear that for every constant
linear in the momenta, its square is a constant quadratic in the momenta, that is, of the kgrm of

As mentioned earlier, Darboux and Koenigs have given a comprehensive analysis of when a
two-dimensional Riemannian space admits more than one quadratic constant. In Sec. Il we sum-
marize some of these resulfs!’ In the remaining sections we concentrate on a particular space
with a Killing vector and two Killing tensors. Section Il deals with the free Hamilton—Jacobi
equation and we show that the Sofimger equation allows separation of variables in three
different coordinates systems which we determine explicitly. Potentials that allow separation of
variables in these systems are then introduced. In Sec. IV we find all potentials with this super-
integrability property. We then discuss in Sec. V the various surfaces that may be represented by
the infinitesimal distances that we have and the consequent special functions that arise from the
corresponding Schdinger equation.

II. ON GEODESICS WITH QUADRATIC INTEGRALS

In 1889 G. Koenig¥ wrote a note in the last volume of Darboux’s treatise “Btie ganerale
de surfaces,” the title of which coincides with the title of this section. This note contains a
summary of results which are the solution of the problem outlined in the Introduction, viz. when
does the free Hamiltonian of a two-dimensional Riemannian space admit more than one quadratic
constant of the motion. The analysis was performed over the field of complex numbers and must
be modified over the reals. What Koenigs did was to write the infinitesimal distance for a general
two-dimensional Riemannian space in the form

ds?=4f(x,y)dxdy. (14)

This can always be done in two dimensions olelhe corresponding free Hamiltonian then has
the form
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1

H= 2((xy) PxPy - (15

By making the requirement that there is a second order Killing tensor of the form
n=all(u)pip;, (16)

Darboux and Koenigs establish the following propositions.

(1) Any two-dimensional Riemannian space that admits more than one Killing vector must be a
space of constant curvature and admit three linearly independent Killing vectors.

(2) Any two-dimensional Riemannian space that admits more than three Killing tensors is a space
of constant curvature. It then actually admits five linearly independent Killing tensors which
are all bilinear expressions in the Killing vectors. The sixth bilinear combination is the Hamil-
tonian itself.

(3) Any two-dimensional Riemannian space that admits precisely three linearly independent Kill-
ing tensors will be a Riemannian space of revolution. In fact, there will be one Killing vector
and two Killing tensors.

Two-dimensional Riemannian spaces of this latter type were distinguished to be of four types.
The infinitesimal distances of these types are given by

(1) ds?=(x+y)dxdy,

(I1) ds?=(a/(x—y)? + b)dxdy,

() ds?=(ae” *™2+pe *Y)dxdy,

(IV) ds?= (a(e* Y2+ ely=x/2) 4 h) /(e 92— ey=X)12)2 g xdy,
It is the first of these infinitesimal distances that we analyze in some detail in the next section. We
shall call the spaces “Darboux spaces” and denote ther® pyD,, D5 andD,, respectively.

lll. THE FREE PARTICLE AND SEPARATION OF VARIABLES IN A DARBOUX SPACE
OF TYPE ONE

If we consider the first space of Darboux’s list and look at real forms of this space only, it is
convenient to make the new choice of variables

X=u+iv, y=u—iv. (17
The corresponding infinitesimal distance can then be taken as
ds?=2u(du?+dv?), (18

and the corresponding Hamiltonian has the form

1
_ T2, .2
H= 2 (p%+p2). (19

Associated with this Hamiltonian are three integrals of the free motion, two quadratic and one
linear:

U n24n2
K=py,,  Xi=PuPy= 55 (PutPy),

)2 (20)
X3=Pp,(vPu=UP,) = 7= (PG+PY).

These three integrals satisfy the polynomial Poisson algebra relations,
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(KX }=2H, KX }==X;, {X;,X;}=2K5 (21)
They cannot be functionally independent and, in fact, satisfy the relation
AHX,+ X5 +K*=0. (22)
For the analogous quantum problem it is sufficient to consider the operators

o 1 5. > .
H=— =05+, K=-ig,,

(23)
2

S UV o 2 S 1 V"o 2
Ki= =00, + 5o (50, Xo= =510, 0a,=Ud, ]+ 2= (95+30),

where[A,B], =AB+BA. The quantum versions of the quadratic constants are obtained via the
formula

- 1 -
x=—7§ai<a" Vo). (24

These operators have the same commutation relations as for the classical constants with the
Poisson bracket replaced by the commutator bracket:

[K.X.]=2iH, [K,X,]=—iXy, [X;,X,]=—2iK3. (25)
There is also the operator relation
AAX,+ X2+ K*=0. (26)
The question we address in this section relates to the various possible ways that separation of
variables can be achieved in the case of free classical motion or its quantum analogue, the free

Schralinger equation. The criteria for this to occur is the same in either case. Classically, if we
have a general quadratic first integhabnd free Hamiltonian

H=3g"(uwpip;, (27)
and if the characteristic equation,
|2~ pg'l|=0, (29)

has two distinct rootg; andp,, the Hamiltonian will have Liouville form when written in terms
of the new variablegp,, p,. Thatis,

a(p1)pj +(p2)P5,
a p1tp2 '

H

(29

In this form, both classical and quantum systems can be solved by the separation of variables
ansatz.

If we want to classify all different separable coordinate systems for a given Hamiltonian, we
need to know how many essentially different quadratic first integrals are possible. To decide on the
notion of equivalence we first observe that the variabldoes not explicitly appear in the metric
tensor, that is, it is an ignorable variable. This means that the transformatienstb form a
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one-dimensional Lie group. Accordingly, we determine the notion of equivalence to mean that two
quadratic integrals are equivalent if they are related by a motion of this group. Consequently, the
most general quadratic constant can be written

A =aX;+bX,+cK? (30)

to within the addition of a multiple oH. The second order elements transform under the
adjoint action according to

X;— exp( aK)X; exp( — aK)=exp aAd(K))X;=X;+ a{K, X} + 3 o2 {K {K,X;}} +..., (31
or specifically
X;—Xi+2aH, X,—X,—aX;—a?H. (32

There are three classes of possible quadratic first integrals under this equivalence relation. Typical
representatives are

X,+aK? X,+aK? K2 (33

We can now explicitly demonstrate the separable coordinates in each of these cases.
(1) Separating coordinates associated withXaK?. If we choose a representative to be

L =X, +sinhc K2, (34

the corresponding roots of the characteristic equation and hence new variables are
2
r=p;=—2(Cu+v), SZpZZE(U—Cv), C=e ¢ (35

In terms of these coordinates the Hamiltonian has the form

2(C*+1% (1,
= Cs=r) |czPstPr) (36)
and the corresponding quadratic constant in these coordinates is
(C2+1)2[ r
ZZW @ngrSprz : (37)

(2) Separating coordinates associated with-XaK?. Taking the second representative in the
list (33), that is,L = X,+aK?, a convenient choice of new variablés is related to the rootg;

by
p1=n%(2a—1n%), p,=—£&4(2a+é&). (38)

The corresponding classical Hamiltonian then has the form

2 2
_ Pt Py
@@ e 39
The associated constant of the motion in the new coordinasesl 7 is
2 2\ 12 20 ¢2 2
(2a—7n°)p;—&7(£°+2a)

208+ 9°)(E£—n°+2a)
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The defining coordinates,v are written in terms of the new coordinatés via

u=3(&-n?+a, v=éy, (4

which looks like displaced parabolic coordinates in the plane.

(3) Separating coordinates associated witR. K or the last representativi€?, we need only
the coordinatesl,v and to recognize the fact thit=p, .

We conclude this section by discussing the solutions to the free particle and freeliBgero
equation in these three cases.

In case 1 above it is more convenient to choose the variables according to

u=r cosfd+ssind, v=-—rsinf+scosé. (42

The classical Hamilton—Jacobi equation then has the form

_(8Slar)?+(9Slas)® 23
"~ 4(rcosf+ssing) (43
which has the general separable solution
s _ (4Er cos¢9—)\)3’2Jr (4Essin 6+ \)%? "
=SiN+S(9)=—5Fos0 6E siné (4
The corresponding free Scliioger equation
. 1 >
Aw=— (+ 02 W =EW¥ (45)

4(r cosf+ssing)

has the typical product solutions

p p 5 w 32

=~ agbasa] [+ aEmal Ol 2T g |

5 . w 3/2

3 V4Esing| s+ 4E sin 0) ) @

3
whereC,(z) is a solution of Bessel's equation.
In the second case the classical Hamilton—Jacobi equation is

XCy3

(8S19&)2+ (39Sl dn)?
Y R A ) = (47)
2(&°+ n°)(§°—n"+2c)
and has a general solution of the form
s=f \/2E§4+2Ec§2—)\d§+f V=2E7*+2Ecy’+\d7, (48)

which can be expressed in terms of elliptic integrals. The correspondingdittyeo equation has
a solution of the formr = 1 (€) ¥,(n), where they; satisfy

(9%+ 2B+ AECE2+ N ) gy (£) =0,
(49
(95— 2En*+4Ecn®—N\)iy(7)=0.

These equations are readily identified as the equations for the anharmonic oscillator.
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In the third case the classical Hamilton-Jacobi equation is
H—:l a82+ (QSZ—E 50
- E % % — L ( )
which has separable solutions
S= i(4Eu— k?)32+ kv (51)
6E '
The separable solutions to the corresponding free “Safger equation
1 2 2
— gy (G )V =EV (52
have the form
[ m? 2
Y= u— ECJ_/g(§\/4E

It is clear that the actual solutions to the classical motion or the correspondingdajen
equation depend on the range of values assumed by the various real variables, that is, on exactly
which real manifold we are considering.

2\ 3/2 )
U—E) )e‘m”. (53

IV. INTEGRABLE AND SUPERINTEGRABLE SYSTEMS FOR THE DARBOUX SPACE OF
TYPE ONE

In this section we address the problem of superintegrability for the Hamiltonian

H= 20 (P2 B0) (54
TR
that is, look for potential®/(u,v) for which

H=H+V(u,0) (55)

admits at least two extra quadratic integrals. The way to solve this problem is as follows. First we
consider that we already have one quadratic first integral

L=a(u,v)p2+b(u,v)pyp,+c(U,v)p2+d(u,v). (56)

We know that the quadratic part &ffi.e., that part obtained by puttind(u,v)=0 in (56)] must
correspond to one of the three possibilities outlined in the previous section. For each of these
possibilities separation of variables is possible in coordinate® where u=u(«,8), v
=v(«,B). The addition of a potential implies that separation is preserved. As a consequence of

this, H can be written as

_ pitpitf(a)+a(B)
T (@ B) &7
and the corresponding first integral will be
—_ o(a)(p5+9(B))—7(B)(petf(a)) -

o(a)+7(B)
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The next step is to impose the condition that there is a further quadratic first integral and see what
conditions this imposes on the functioh&) andg(B). If we do these calculations systemati-
cally, we arrive at the following three cases.

D

2 2 2 2
_Putp,  by(4u"+v%) b, bs
H= au + a0 + ?4— m (59)

The additional constants of the motion have the form

Ry=Xo— bjf— bzuvz - b3(4;22:02) . Ry=KZ2+bu?+ 4U—b2‘°’ (60
and the corresponding quadratic algéBrdrelations are determined by
{R,R;}=8HR; +6R3+ 16b,R,— 32b; b,
{R,R,}=—8HR,—160;R;, (62)

R?=—16HR;R,— 4R3— 16b,R5— 64b3H?— 160, R5+ 64b,b3R,+ 256, b,bs,

whereR={R;,R,}. The Hamiltonian clearly separates in the coordinatesdv as well as the
coordinatest, » given byu=(£?>— %) +a, v=¢&n. This can be seen from the explicit form

e P; P (D& P22 )+ abyt (405187
208+ 7)) (& n°+2a) 2(8—n°+2a)
The corresponding quadratic quantum algebra relations are
[R,R;]=—6R2—8HR,; +160,R,+2b;(3+ 16b3),
[R,R,]=8HR,—16b;R;, (63)
ﬁzz + 4@2_ SH [ AR]_ y ﬁ2]+ - 1&)2ﬁ§_ 1&)]_@%_ 4b1( 11+ 1&)3) ﬁz
— 4(3+ 16b3)H2+ 16b,b,(3+ 16b3),
whereR=[R;,R,].
2
2+p? a; aw az(ui+u?
o PUTPL, 2 A0 sUTuT) (64)
4u u u u
The additional constants of the motion have the form
2a,v  2a,(u’>—v?) 2azv(ui-v?
Rz, 220, 28(WP—v%)  Zaw(W-v®)
u u u
(65)

R,=K?+4a,v +4agv?,
and the corresponding quadratic algebra relations are determined by

{R,R;}=—8H?+16a3R,+8(a3+4a,a3),
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{R,Rz}: 16a2H - 16a3R1, (66)
R?=16H?R,— 16a3R5+ 32a,HR, — 16a3R5— 16(a3+ 4a,a3)R,— 64a,a3.

If we change the coordinates accordinguer cosé+ssinf, v=—r sin #+scosé, the Hamil-
tonian assumes the form

’ pZ+ p2+4a,+4a,(—r sinf+scosh) + dag(r?+s?)

4(r cosf+ssinf) ’ 67
which clearly also separates in these coordinates.
The commutation relations of the corresponding quantum algebra are
[R,R,]=16a3R,+8H?—8(a3+4a,a3),
[R,R,]=—16a3R, + 16a,H, (68)
R?= —16a3R5— 16a3R2+ 16H%R, + 32a,HR; — 16(a3+ 4a,a3) R, + 64(a3—a,a3).
(3) The third potential gives rise to a Hamiltonian of the form
2 2
pu+ pu a
=——+—.
4u u (69
There are three extra constants associated with this Hamilonian,
2av av?
Rlle_T, RZZXZ_T and K. (70)
The associated Poisson bracket relations are
{K,Ri}=2H, {K,R}=—R;, {R;,R,}=2K(K?+2a), (71
and the corresponding functional relation among these constants is
AHR,+ R2+ K*+4aK?=0. (72)

The commutation relations associated with the corresponding quantum problem have the form
[K,R;]=2iH, [K,Ry]=—iR;, [Ry,R;]=—2iK(K2-2a), (73
and the identity amongst the defining operators is
4HR,+RI+K*-4ak?=0. (74)
Upon examination of the various superintegrable potentials we have constructed, we see that
by multiplying the equatioid =E by a suitable factor we essentially recover a variant of one of

the superintegrable systems already classified for spaces of cofwtaerg curvature. For the
first potential above, the equatith=E may be written

4b
P+ P2+ bi(4u+0?) +4b, + —5 — 4EU=0. (75)

This equation is known to have separable solutions in coordingtesand associated parabolic
coordinates,  given byu=3(&2— 7?), v=E&x. With the second potentia =E becomes
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p2+ p2+4ag(u?+v?)+4a, +4aw —4Eu=0, (76)
and the third becomes
p2+p2—4Eu+4a=0. (77)

This observation is crucial to the whole program that we will undertake which aims at finding all
superintegrable systems associated with a curved space in two dimensions and having quadratic
constants.

All three of the above systems are special cases of the superintegrable systems found in
E,.* They were shown to be exactly solvable in Ref. 12.

V. EMBEDDINGS OF A DARBOUX SPACE OF REVOLUTION OF TYPE ONE

It is clear that the infinitesimal distance
ds’=2u(du?+dv?) (79

does not uniquely determine a manifold. This then gives rise to the question of just what sort of
surfaces can this infinitesimal distance represent. A particular choice of such a surface would
determine the range of variation of the parameters which in turn enables the solution of the
geodesic equations in the case of classical mechanics and the quantum mechanics of a point
particle. It is known that any two-dimensional Riemannian space can be embedded in a three-
dimensional Euclidean space of indefinite or definite signature. In this section we look at a number
of natural embeddings and discuss their associated geodesics and quantum mechanics. The infini-
tesimal distance that we are dealing with can be embedded in three-dimensional Euclidean space
E; via the formulas

X=+\2ucosy, Y=+y2usinv, (79
z fz(F L)y 4u® ) (80)
== v — u’—uj,

31"

whereu=3, vo<v<2m+uvg, Sing=+2u+1 andF(¢,k) is an elliptic integral of the first kind.
This embedding gives the infinitesimal distance

dX?+dY2+dZ%=2u(du?+dv?). (81)

To do quantum mechanics on this surface let us first look for separable solutions to the free
Schralinger equation. A typical solution has already been found in the previous section, viz.

m

V= U_E

Cu3l u——| |em, (82)

m2\ 32
4E

2
3VE

wherem is an integer. AJu=3 and we see thati=3 is not a singular point of the separable
equation inu, we can impose a condition of the form

av(3,0)+b¥,(3,0)=0 (83)

together with the periodic boundary conditidi(u,v)=%¥(u,v +2), which is already satisfied.

If we takea=1, b=0, thenE=0, otherwise there is no solution satisfying the boundary condition
atu=3. If E=0, then we can find a suitably behaved solution that vanishas-as and satisfies
the boundary condition ai= 3, viz.

W=(UU")Y2J55U) I 15(U") = Jy5U")I- 15(U)), (84)
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whereU = 2\J4E(u— m?/4E)%? andU’ = 2\/4E(%— m?/4E)®2. These solutions are the analog of
the scattering states on this manifold subject to the boundary condition we have adopted.
An interesting embedding in pseudo-Euclidean space is given by

X=\2uv, Y=\u(fu?-v2+3, T=Ju(fu?—v?- (85)

for which dX?+dY?—dT?=2u(du®+dv?). In this case the variables vary over the ranges
<p<o, Osu<wo. We could indeed do an analysis of the free Sdhrger equation on this
surface and come to a similar conclusion if we imposed the condition that the wave function is

zero atu=0. However, if we consider the first potenti€d9) and chooseb,;=— B2, by=13(3
—v?) for real B and y=0, and if we write the solutions to Schifinger’s equation in the form
¥=U(u)V(v), then two independent solutions of the separation equation satisfigdcay be
taken as

1 1
v+=exp( - E/302)1FV+1’21|:1(§(1¢ y)— %,u v,Bv?]. (86)

If we wish to interpret these solutions as being associated with an angle variable which varies in
the range &vo<v<uvy+ 2, then we would require the periodic boundary conditions

V(vg)=V(vg+2m), V'(vg)=V'(vo+2m). (87

The possibility of imposing these boundary conditions depends on wheth@roccurs inside the
domain ofv. If it does not, then the spectrum is determined from the condition

WV (X) =V, (x+27),V_(X)—V_(X+ 277)]|X:U0=0. (89
If v=0 is included, then the same conditions no longer work as this is a regular singular point of
the equation. Indeed, if,=0 and we assume> 3, then we choose the solutidf, and impose
the condition

V., (2m)=0 (89

asV, (0) is already zero. The quantization condition is then determined by

1 M
§(1+7)—E,

For theu separation equation the range of variation of the variabtg is clear andu= 13 is not
a singularity of the the separation equation. We can accordingly take typical solutions to be

E
2|3 il o

wherev= (1/48) (E?/ 8% + 4b,— ) — 3. To obtain a solution that vanishesas- requires that
a,=0. The remaining boundary condition becomes

lFl

1+ 7,4;3772) =0. (90)

U.(u)=a,D, +a,D,| —2yBlu

2J—(2 2/3)) 0. (92)

This condition determines the nature of the discrete spectrum. For large eigenvalues the discrete
spectrum is given by

—2VBn (93)
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for suitable large integen.

If we consider the second potenti@4), then puttinga;= — o the equation fol(v) has
solutions of the form

a a
V=dlD,,(2\/E(v—ﬁz +d2DV(—2\/E(v—ﬁg))=d1V++d2V, (94)
where
S %) 1 95
v R =9

As there are no singularities i in this equation and we can require theg<v<wgy+ 2,
V(W) =V(Wo+2m), V'(wg)=V'(Wo+2m), (96)
which is equivalent to
WLV, (X) =V (X+2),V - (X) = V_(X+27) ][ x= ;= 0. (97)

The solutions for the functiok) (u) that are well behaved for large are

E
U(u)sz(zJE(u—z—Bz)>, (98)
wherep= (1/48) (4a,—4u+ E? a?) — 1.

VI. CONCLUSION

In this article we have examined one of the four spaces of revolution listed by Kdériigs.
the space that we have considered, it has been shown that there are three potentials that can be
added to give superintegrable Hamiltonian systems of the type we seek. In each of these cases we
have exhibited the various inequivalent ways in which a separation of variables can be achieved
for both the classical and quantum equations that result. This is equivalent to determining the
various inequivalent ways in which a Hamiltonian can be written in Liouville fd&W) for
suitable separable coordinatasB. In particular, we note that each of the three superintegrable
systems we have examined are such that when we write out the classical etlrattoand factor
out the denominator we recover a variant of a superintegrable system corresponding to flAt space.
This is an example of what is called coupling-constant metamorpfbtisas been proven in
Ref. 12 that all of the superintegrable systems in the plane are such that the bound state energies
can be calculated algebraically. In all cases the Hamiltonian lies in the enveloping algebra of
sl(3,R). We conclude that analogous statements apply to the superintegrable systems that we have
found.
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