45 research outputs found

    Organic small molecule field-effect transistors with Cytop(TM) gate dielectric: eliminating gate bias stress effects

    Full text link
    We report on organic field-effect transistors with unprecedented resistance against gate bias stress. The single crystal and thin-film transistors employ the organic gate dielectric Cytop(TM). This fluoropolymer is highly water repellent and shows a remarkable electrical breakdown strength. The single crystal transistors are consistently of very high electrical quality: near zero onset, very steep subthreshold swing (average: 1.3 nF V/(dec cm2)) and negligible current hysteresis. Furthermore, extended gate bias stress only leads to marginal changes in the transfer characteristics. It appears that there is no conceptual limitation for the stability of organic semiconductors in contrast to hydrogenated amorphous silicon.Comment: 4 pages, 3 figures, to be published in Appl. Phys. Let

    Intrinsic Josephson junctions in the iron-based multi-band superconductor (V2Sr4O6)Fe2As2

    Full text link
    In layered superconductors, Josephson junctions may be formed within the unit cell due to sufficiently low interlayer coupling. These intrinsic Josephson junction (iJJ) systems have attracted considerable interest for their application potential in quantum computing as well as efficient sources of THz radiation, closing the famous "THz gap". So far, iJJ have been demonstrated in single-band, copper-based high-Tc superconductors, mainly in Ba-Sr-Ca-Cu-O. Here we report clear experimental evidence for iJJ behavior in the iron-based superconductor (V2Sr4O6)Fe2As2. The intrinsic junctions are identified by periodic oscillations of the flux flow voltage upon increasing a well aligned in-plane magnetic field. The periodicity is well explained by commensurability effects between the Josephson vortex lattice and the crystal structure, which is a hallmark signature of Josephson vortices confined into iJJ stacks. This finding adds (V2Sr4O6)Fe2As2 as the first iron-based, multi-band superconductor to the copper-based iJJ materials of interest for Josephson junction applications, and in particular novel devices based on multi-band Josephson coupling may be realized.Comment: Accepted in Nature Physic

    Oxygen-related traps in pentacene thin films: Energetic position and implications for transistor performance

    Full text link
    We studied the influence of oxygen on the electronic trap states in a pentacene thin film. This was done by carrying out gated four-terminal measurements on thin-film transistors as a function of temperature and without ever exposing the samples to ambient air. Photooxidation of pentacene is shown to lead to a peak of trap states centered at 0.28 eV from the mobility edge, with trap densities of the order of 10(18) cm(-3). These trap states need to be occupied at first and cause a reduction in the number of free carriers, i.e. a consistent shift of the density of free holes as a function of gate voltage. Moreover, the exposure to oxygen reduces the mobility of the charge carriers above the mobility edge. We correlate the change of these transport parameters with the change of the essential device parameters, i.e. subthreshold performance and effective field-effect mobility. This study supports the assumption of a mobility edge for charge transport, and contributes to a detailed understanding of an important degradation mechanism of organic field-effect transistors. Deep traps in an organic field-effect transistor reduce the effective field-effect mobility by reducing the number of free carriers and their mobility above the mobility edge.Comment: 13 pages, 14 figures, to be published in Phys. Rev.

    Defect healing at room temperature in pentacene thin films and improved transistor performance

    Full text link
    We report on a healing of defects at room temperature in the organic semiconductor pentacene. This peculiar effect is a direct consequence of the weak intermolecular interaction which is characteristic of organic semiconductors. Pentacene thin-film transistors were fabricated and characterized by in situ gated four-terminal measurements. Under high vacuum conditions (base pressure of order 10E-8 mbar), the device performance is found to improve with time. The effective field-effect mobility increases by as much as a factor of two and mobilities up to 0.45 cm2/Vs were achieved. In addition, the contact resistance decreases by more than an order of magnitude and there is a significant reduction in current hysteresis. Oxygen/nitrogen exposure and annealing experiments show the improvement of the electronic parameters to be driven by a thermally promoted process and not by chemical doping. In order to extract the spectral density of trap states from the transistor characteristics, we have implemented a powerful scheme which allows for a calculation of the trap densities with high accuracy in a straightforward fashion. We show the performance improvement to be due to a reduction in the density of shallow traps <0.15 eV from the valence band edge, while the energetically deeper traps are essentially unaffected. This work contributes to an understanding of the shallow traps in organic semiconductors and identifies structural point defects within the grains of the polycrystalline thin films as a major cause.Comment: 13 pages, 13 figures, to be published in Phys. Rev.
    corecore