40 research outputs found

    Alignment of retention time obtained from multicapillary column gas chromatography used for VOC analysis with ion mobility spectrometry

    Get PDF
    Multicapillary column (MCC) ion mobility spectrometers (IMS) are increasingly in demand for medical diagnosis, biological applications and process control. In a MCC-IMS, volatile compounds are differentiated by specific retention time and ion mobility when rapid preseparation techniques are applied, e.g. for the analysis of complex and humid samples. Therefore, high accuracy in the determination of both parameters is required for reliable identification of the signals. The retention time in the MCC is the subject of the present investigation because, for such columns, small deviations in temperature and flow velocity may cause significant changes in retention time. Therefore, a universal correction procedure would be a helpful tool to increase the accuracy of the data obtained from a gas-chromatographic preseparation. Although the effect of the carrier gas flow velocity and temperature on retention time is not linear, it could be demonstrated that a linear alignment can compensate for the changes in retention time due to common minor deviations of both the carrier gas flow velocity and the column temperature around the MCC-IMS standard operation conditions. Therefore, an effective linear alignment procedure for the correction of those deviations has been developed from the analyses of defined gas mixtures under various experimental conditions. This procedure was then applied to data sets generated from real breath analyses obtained in clinical studies using different instruments at different measuring sites for validation. The variation in the retention time of known signals, especially for compounds with higher retention times, was significantly improved. The alignment of the retention time—an indispensable procedure to achieve a more precise identification of analytes—using the proposed method reduces the random error caused by small accidental deviations in column temperature and flow velocity significantly

    MCC/IMS signals in human breath related to sarcoidosis-results of a feasibility study using an automated peak finding procedure

    No full text
    Bunkowski A, Bödeker B, Bader S, Westhoff M, Litterst P, Baumbach JI. MCC/IMS signals in human breath related to sarcoidosis-results of a feasibility study using an automated peak finding procedure. Journal of Breath Research. 2009;3(4):046001

    Volatile organic compounds during inflammation and sepsis in rats : a potential breath test using ion-mobility spectrometry

    Get PDF
    Background: Multicapillary column ion-mobility spectrometry (MCC-IMS) may identify volatile components in exhaled gas. The authors therefore used MCC-IMS to evaluate exhaled gas in a rat model of sepsis, inflammation, and hemorrhagic shock. Methods: Male Sprague-Dawley rats were anesthetized and ventilated via tracheostomy for 10 h or until death. Sepsis was induced by cecal ligation and incision in 10 rats; a sham operation was performed in 10 others. In 10 other rats, endotoxemia was induced by intravenous administration of 10 mg/kg lipopolysaccharide. In a final 10 rats, hemorrhagic shock was induced to a mean arterial pressure of 35 +/- 5 mmHg. Exhaled gas was analyzed with MCC-IMS, and volatile compounds were identified using the BS-MCC/IMS-analytes database (Version 1209; B&S Analytik, Dortmund, Germany). Results: All sham animals survived the observation period, whereas mean survival time was 7.9 h in the septic animals, 9.1 h in endotoxemic animals, and 2.5 h in hemorrhagic shock. Volatile compounds showed statistically significant differences in septic and endotoxemic rats compared with sham rats for 3-pentanone and acetone. Endotoxic rats differed significantly from sham for 1-propanol, butanal, acetophenone, 1,2-butandiol, and 2-hexanone. Statistically significant differences were observed between septic and endotoxemic rats for butanal, 3-pentanone, and 2-hexanone. 2-Hexanone differed from all other groups in the rats with shock. Conclusions: Breath analysis of expired organic compounds differed significantly in septic, inflammation, and sham rats. MCC-IMS of exhaled breath deserves additional study as a noninvasive approach for distinguishing sepsis from inflammation

    Signals of neutropenia in human breath?

    No full text
    Children undergoing systemic chemotherapy often suffer from severe immunosuppression usually associated to severe neutropenia (neutrophils < 0.5 x 109/l). Clinical courses during those periods range from asymptomatic to septic general conditions. Development of septic symptoms can be very fast and life-threatening. Swift detection of risk factors in those patients is therefore needed. So far no early, rapid and reliable marker or tool exists. Ion-Mobility-Spectrometry coupled with a Multi-Capillary-Column (IMS-MCC) can analyze more than 600 volatile components from exhaled air within a few minutes and hence is a potential, rapid detection-tool. As a proof of concept we measured the exhaled breath of 11 patients with neutropenia and 10 healthy controls ranging from 3 to 18 years of age at the time of measurement. Ten milliliters breath samples were taken at the outpatient clinic and analyzed with an onsite IMS-MCC (BreathDiscovery, B&S Analytik, Dortmund, Germany). Dead-space-volume was adapted to two groups (small 250 ml, large 500 ml). Interestingly 59 differing peaks were measured. Eleven were significantly different (p ≤ 0.05), three of which highly significant (p ≤ 0.01) in Mann-Whitney-Rank-Sum-testing. The corresponding analytes used in the decision tree are 2-Propanol, D-Limonene and Acetone. The analytes with the lowest rank sum identified are 2-Hexanone, Iso-Propylamine and 1-Butanol. Eventually we were able to show a three-step-decision-tree, which discerns the 21 samples except one from each group. Sensitivity was 90 % and specificity was 91 %. Naturally these findings need further confirmation within a bigger population. Our pilot-study proves that Ion-Mobility-Spectrometry coupled with a Multi-Capillary-Column is a feasible rapid diagnostic tool in the setting of a pediatric oncology out-patient clinic for patients 3 years and older. Our first results furthermore encourage additional analysis as to whether patients at risk for septic events during immunosuppression can be diagnosed in advance by rapidly assessing risk factors such as Neutropenia in exhaled breath
    corecore