43 research outputs found

    Factors Affecting Loads at Hypersonic Speeds

    Get PDF
    Factors affecting loads at hypersonic speed

    Exploratory Investigation of Boundary-Layer Transition on a Hollow Cylinder at a Mach Number of 6.9

    Get PDF
    The Reynolds number for transition on the outside of a hollow cylinder with heat transfer from the boundary layer to the wall has been investigated at a Mach number of 6.9 in the Langley 11-inch hypersonic tunnel. The type of boundary layer was determined from impact-pressure surveys and optical viewing. From a correlation of results obtained from various sources at lower Mach numbers (in the range 2.0 to 4.5) and data from the present tests with variable Reynolds number per inch, leading-edge thickness and free-stream Reynolds number per inch appear to be important considerations in flat-plate transition results. At a given Mach number, it appears that the Reynolds number based on leading-edge thickness is an important parameter that must be considered in comparisons of flat-plate transition data from various installations

    Some Simple Solutions to the Problem of Predicting Boundary-Layer Self-Induced Pressures

    Get PDF
    Simplified theoretical approaches are shown, based on hypersonic similarity boundary-layer theory, which allow reasonably accurate estimates to be made of the surface pressures on plates on which viscous effects are important. The consideration of viscous effects includes the cases where curved surfaces, stream pressure gradients, and leadingedge bluntness are important factors

    A Simple Method for Determining Heat Transfer, Skin Friction, and Boundary-Layer Thickness for Hypersonic Laminar Boundary-Layer Flows in a Pressure Gradient

    Get PDF
    A procedure based on the method of similar solutions is presented by which the skin friction, heat transfer, and boundary-layer thickness in a laminar hypersonic flow with pressure gradient may be rapidly evaluated if the pressure distribution is known. This solution, which at present is. restricted to power-law variations of pressure with surface distance, is presented for a wide range of exponents in the power law corresponding to both favorable and adverse pressure gradients. This theory has been compared to results from heat-transfer experiments on blunt-nose flat plates and a hemisphere cylinder at free-stream Mach numbers of 4 and 6.8. The flat-plate experiments included tests made at a Mach number of 6.8 over a range of angle of attack of +/- 10 deg. Reasonable agreement of the experimental and theoretical heat-transfer coefficients has been obtained as well as good correlation of the experimental results over the entire range of angle of attack studied. A similar comparison of theory with experiment was not feasible for boundary-layer-thickness data; however, the hypersonic similarity theory was found to account satisfactorily for the variation in boundary-layer thickness due to local pressure distribution for several sets of measurements
    corecore