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Ie NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 2773 

AN APPROXIMATE METHOD FOR DETERMINING THE DISPLACEMENT 

EFFECTS AND VISCOUS DRAG OF LAMINAR BOUNDARY LAYERS 

. IN TWO -DIMENSIONAL HYPERSONIC FLOW 

By Mitchel H. Bertram 

SUMMARY 

A simplified approximate theory is presented by means of which 
the laminar boundary layer over an insulated two - dimensional surface 
may be calculated, a linear velocity profile being assumed, and an 
estimate made of its effect in changing the pressure distribution over 
the profile upon which the boundary layer is formed . Skin friction is 
also determined. Comparisons of results from this theory are made 
with experimental results at a Mach number of 6.86 and a Reynolds 
number of 980,000. 

INTRODUCTION 

At hypersonic speed the boundary layers at a given Reynolds number 
are thicker than those at lower speeds because of the large temper­
ature gradients across the boundary layer. This thick boundary layer 
effectively distorts the body contours and thereby causes deviations 
from the pressure distributions predicted by theories which take no 
account of viscous effects . In the present paper, only the laminar 
boundary layer is considered and a theoretical method developed whereby 
the surface pressure distribution over either a flat plate or a two­
dimensional curved surface in hypersonic flow can be obtained by taking 
into account the effect of the boundary layer in distorting the theo ­
retical nonviscous flow field . This simplified analysis is based on 
results obtained by Busemann (ref . 1) which indicated that the velocity 
profile across the boundary layer formed on an insulated flat plate is 
approximately linear at high Mach numbers . 

I / 
After the work of Busemann, Von Karman and Tsien (ref . 2 ) obtained, 

for a flat plate, both a solution in which a linear velocity profile 
was assumed and a more exact solution in which the power law for 
viscosity with an exponent of 0 .76 was used where Busemann had utilized 
a parabolic viscosity relationship. One of the more recent works, that 
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of Van Driest (ref . 3) who use d the method of Crocco (ref . 4) to obtain 
even more exact results f r om a solution of the boundary- layer equations, 
shows that the law used to determine the viscosity variation in the 
boundary layer has but a small effect on the high Mach number linearity 
of the velocity profile . 

That part of the present analysis in which the flat plate or zero 
pressure gradient is discussed is similar to the linear - velocity­
profile analysis made by Von K~rmAn and Tsien but does not use 
the power law for viscosity, which is generally inaccurate for the 
range of temperature encountered at hypersonic speeds . This analysis 
is extended to approximate the case with pressure gradient . The case 
of the insulated flat plate can be solved by the more exact methods 
(such as that of Crocco) with little limitation as to the law of 
variation of the various parameters; however, these more exact solutions 
are laborious compared with this approximate solution and the results 
of the approximate solution, as will be shown, are, in general, close 
to the results obtained from more exact theories in predicting skin 
friction and displacement thickness. In most cases, the results of 
the more exact solutions (for example, refs. 4 and 5) are available 
for only limited free - stream temperatures .* 

An application of this simplified theoretical analysis is presented 
and the results are compared with experimental surface-pressure results 
obtained from the Langley ii - inch hypersonic tunnel for a flat plate 
and a circular - arc profile set at various angles of attack to flow at 
a Mach number of 6.86 . Also, the results of skin- friction drag obtained 
from the theory are compared with drag results obtained from models with 
wedge and diamond profiles and square plan forms. 

A,B 

'Y - 1 2 
k=-2- M 

SYMBOLS 

constants in Sutherland's viscosity formula 

average skin- friction drag coefficient for one side 
of a plate 

drag coefficient 

slope of linear M(x) curve 

*During the process of publication of this paper, a paper by Lees 
and Probstein (ref . 6) was published which treats the problem of the 
displacing effect of the boundary layer in hypersonic flow in a more 
rigorous marmer . 

J 
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total l engt h along surface 

Mach number at edge of boundary layer 

Mach number in undisturbed stream 

initial Mach number over surface under consideration 

exponent in power law for viscosity 

static pressure over surface 

static pressure in undisturbed stream 

surface local static pressure 

stagnation pre ssure at edge of boundary layer 

gas constant 

Reynolds number based on free-stream conditions at 
edge of boundary layer and chord length 

absolute temperature 

absolute temperature at edge of boundary layer 

absolute stagnation temperature 

velocity inside boundary layer and parallel to surface 

velocity at edge of boundary layer 

3 

distance along surface measured from forward stagnation 
point 

distance normal to surface 

angle of attack 

ratio of specific heat at constant pressure to 
specific heat at constant volume 

total thickness of boundary layer 
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displacement thickness of boundary layer 

momentum thickness of boundary layer 

initial value of momentum thickness over surface 
under consideration 

dynamic viscosity at edge of boundary layer 

dynamic viscosity at wall 

density inside boundary layer 

density at edge of boundary layer 

shearing stress at wall 

THEORY 

Flow Wi thout Pr essure Gradient 

If flow along an insulated flat plate with a Prandtl number of 
unity is assumed and if the laminar boundary layer that is being formed 
along this plate has a linear velocity distribution normal to the plate, 
then the parameter s of the boundary layer, as well as a good approxi ­
mation to the flow fie ld determined by the presence of the boundary 
layer, may be found in an uncomplicated form capable of rapid solution . 

In reference 1, Busemann integrated the boundary layer for the 
case of laminar flow at M = 8 .8 along an insulated flat plate for a 
Prandtl number of unity , constant specific heat, and a parabolic 
viscosity relationship obtained from the kinetic theory . Busemann 
found that the linear velocity profile closely approximated the exact 
profile obtained from these assumed conditions ; thus, indications are 
that only small er ror s would result from the assumption of the linear 
profile . Furthermore , in ref erence 7, Prandtl showed that, even in the 
incompressible case where the boundary - layer velocity profile is more 
curved than at large Mach numbers, the magnitude of the displacement 
thickness is rather insensitive to the velocity profile chosen. 

Many investigators have shown that the effect of Prandtl number 
on skin friction and velocity distribution in the boundary layer will 
be small as l ong as the value of the Prandtl number is near unity . 
Two of the more r ecent papers illustrating this point are references 3 
and 4. 

J 
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Density variation through the boundary layer.- With the assumption 
of no heat conduction through the boundary layer or confining wall and 
with a Prandtl number of unity, the energy is constant across the 
boundary layer. When the perfect gas law and the ordinary relation 
between the speed of sound and temperature are applied and the static­
pressure variation through the boundary layer is assumed negligible, 
the density and temperature variations through the boundary layer are 

1 
( 1) 

where and M is the Mach number at the outer edge of 

the boundary layer . 

Displacement thickness. - The reduction of the mass flow in the 
boundary layer has the effect of displacing the main stream from the 
surface by an amount denoted by 0* . 

By definition, 

0* 
o 11 (1 _ ~\ dI. 

o pou) 0 
(2) 

If the density variation of equation (1) is substituted into equa ­
tion (2) and a linear velocity distribution is assumed, that is 

..!:: = y 
u 0 

then equation (2) upon integration becomes 

0* 

5 
(3) 

In figure 1, equation (3) has been plotted for a range of Mach 
number from 0 to 10 . Of much interest and importance is the fact t hat 
at hypersonic Mach numbers the displacement thickness is almost equal 
to the total thickness of the boundary layer . 
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Momentum thickness .- The momentum loss in the boundary layer can be 
shown to be 

"By definition, 

e _11 pu (1 _ uu~ d ~ 
5" - 0 P5U I u 

( 4) 

where 8 is the momentum thickne ss of the boundary layer. With the 
density variation of equation (1) and a linear velocity variation 
across the boundary layer, equation (5 ) is readily integrated to 
obtain 

Equation (6), because of its form, requi res a high degree of 
accuracy in computation . A series solution of the integrand gives 

+ .• J 
or 

1 

2m(2m + 1 ) 

(6) 

(8 ) 

Equation (8) converges very rapidly at Mach numbers below about 
unity . Above, approximately, Mach number 3 the slow convergence of 
equation (8) causes the use of equation (6) to be more satisfactory 
from the standpoint of ease of computation where accurate tables are 
available. Figure 2 presents values of e/5 as a function of Mach 
number for a range of Mach number from 0 to 10. The value of the 
ratio of the displacement thickness to momentum thickness is given as 
a functio n of Mach number in figure 3. 

Though the values of 5*/5 , 8/5, and 5*/e are presented for the 
range of Mach number from 0 to 10, they are primarily intended for use 
in the range above a Mach number of approximately 4. 
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The values of 0*/0 and e/o cannot be satisfactorily compared 
with results from the more exact theories because the ve loci ty in the 
boundary layer asymptotically approaches the free - stream velocity. The 
values of o*/e , however, can be compared with those predicted by more 
exact theories . For the incompressible case (M = 0), the values pre ­
dicted by the linear velocity profile are about 15 percent high with the 
error diminishing as the Mach number increases. 

Flow along a plane wall.- In the case where the free - stream velocity 
is independent of x (for example, flow along a flat plate in a gas of 
infinite extent), the momentum equation of the boundary layer (see 
ref. 8 , vol . II, p . 613) is 

where TO is the shear stress at the wall. Combining equations (5) 
and (9) produces 

2 de 
PoU 

dx 

For a laminar boundary layer wi th a linear velocity distribution, 

where I-!o is the dynamic viscosity at the wall. Thus, combining 
equations (10) and (11) and integrating gives 

(10) 

0* = 0:(82:0u) 1/2 (12) 

5" i-!o 

Slope of the boundary- layer displacement- thickness curve.- Large 
changes in the flow field can occur whe n changes occur in the boundaries. 
Thus, the shape of the boundary layer and the angles it makes with the 
plane wall are of importance, particularly at hypersonic speeds where 
the boundary layer is extremely thick in comparison with the boundary 
layer at subsonic speeds at equivalent Reynolds numbers. The effective 
thickness of the boundary layer is considered to be the displacement 
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thickness and equation (12) becomes upon differentiation 

5* (2 ~P5Ux = 5* 
)

-1/2 

5\ 5 ~o 2x 

Thus, the angle of the boundary-layer displacement surface with respect 
to the flat plate can be determined at any point along the x-axis of 
the plate . 

Drag of a flat plate. - If equations (11) and (12) are combined and 
integrated, and the definition of the mean skin-friction drag coeffi ­
cient is used, then 

1/2 

~e ~o ) Cf = 2.8285" -
P5UL 

2 

:1 (:1) ( 14) 

for the skin-friction drag coefficient of one side of a flat plate, 
where Pi and Ml are the free-stream pressure and Mach number in 
the undisturbed stream before the flat plate and P and M are the 
pressure and Mach number in the free stream over the surface. 

Equation (14) and those developed previously are not restricted 
to the case of the flat plate where the Mach number over the plate is 
the same as that in the free stream immediately before the plate; 
rather , this analysis may be used for a plate inclined at an angle 
with respect to the initial free stream as long as the flow is two­
dimensional and remains laminar with no pressure gradient or separation 
in the region under consideration . 

A plot obtained from equation (14) is given in figure 4. At a 
given initia'l Mach number, appreciable changes in the friction coef­
ficient occur as the angle of attack is varied since the variation 
in the square root of the parameter P5U/~0 will not cancel variations 
in the remaining parameters , which are functions of Mach number only. 
An angle-of-attack variation of approximately -150 to 150 for one sur­
face of a plate is covered for each value of undisturbed-stream Mach 
number Ml in this plot. 

The dashed line in figure 4, representing the case where the con­
ditions over the plate are the same as those in the undisturbed stream, 
does not occur at zero angle of attack for, as shown by a consideration 
of equation (13 ) , the boundary layer prevents this. The zero angle of 
a flat plate relative to the incident stream is thus in the region 
above the line for M = Ml' 
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Substituting equation (A4) of the appendix, in 
formula is used to define the relationship between 

which Sutherland's 
P5U/~0 and P5U/~5' 

into equation (14) yields 

(15) 

where Re is the Reynolds number based on free-stream conditions over 
the plate. If the conditions over the plate are assumed to be the same 
as those in the undisturbed stream and a value for Sutherland's constant 
is determined (see appendix), figure 5 is obtained. 

In order to compare the results from equation (15) with results 
from the more exact theories, figure 6 has been prepared. The upper 
three curves in this figure were obtained from reference 3 and the 
lower curve was obtained from equation (15). The two curves labeled 
Crocco-Van Driest were obtained by Van Driest (ref. 3) using Crocco's 
method (ref . 4). The curve obtained by Von K~rman and Tsien by use of 
the power law for viscosity with an exponent of 0.76 was originally 
presented in reference 2. Figure 6 shows, as was pointed out previously, 
that variations in the Prandtl number have but a small effect on the 
skin friction and indicates the errors that can be incurred by using 
the viscosity power law instead of the more accurate Sutherland's 
formula. The good accuracy at hypersonic Mach numbers of results 
obtained by using the assumption of a linear velocity profile, as 
compared with the results obtained by using the more exact theories, 
is also shown in figure 6. 

The results of an analysis by Klunker and McLean (ref . 5) , which 
is even more exact than the work of Crocco and Van Driest, have not 
been included si nce these results would be almost COincident with the 
Crocco-Van Driest curve for a Prandtl number of 0 .75 through the Mach 
number range 1 to 5 for which the calculations of reference 5 have 
been made. 

Flow With Pressure Gradient 

At the lower supersonic Mach numbers, the b oundary-layer profile 
shape is relatively unaffected by the effects of pressure gradient as 
indicated by the results of reference 9. In hypersonic wi nd-tunnel 
flow, relatively large changes in Mach number result in but small 
changes in velocity because the maximum veloci t y obtai nable is being 
closely approached. The velocity distribution across the boundary 
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layer on an insulated plate in the presence of a negative pressure 
gradient is thus assumed to be linear as was assumed for the case of 
no gradient of pressure . As before, the Prandtl number is assumed to 
be unity. 

Momentum thickness of boundary layer.- For the case of steady flow 
with a pressure gradient, the momentum equation of the boundary layer 
can be written in the form 

2 _ M2 + 5* 
dE+ e BdM 
dx M(l + k) dx 

(16) 

where U and M are, respectively, the local velocity and the local 
Mach number at the edge of the boundary layer. (For more details con­
cerning the development of eq . (16) , see ref. la, p . 22 . ) 

The ratio 5*/e for air where the velocity profile is linear may 
be represented with excellent accuracy by the following approximate 
equation which represents the curve given in figure 3: 

5* = 0 .68M2 + 3 
e 

Substituting equation (17) and the expression for the shearing stress 
from equation (11) into equation (16) yields (with r = 1.40) 

(18) 

where 

Equation (18) is solvable as a linear differential equation. With a 
linear relationship between Mach number and distance along the surface 
or 

M Gx + Ma 
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the solution is 

6.60 
+ M2 ) 
+ Ma2 

Similar assumptions as to velocity profile and Mach number distribu­
tion wer e made by Puckett in reference 10 in conjuncti on with a pipe 
friction law for turbulent flow for an approximate determination of ' 
the thickness of turbulent boundary layers in nozzles. 

Values of ~ --------~~ 1M M9dM 

o 0 (5 + M2 )3 .60 
were obtained by a graphical inte -

gration and are given in table I and figure 7 for a range of Mach number 
from 0 to 10 ; thus , the value of the integral in equation (19) between 
any t wo limits in the range presented may be determined . 

After solving for e, the relation between 0* and e (eq. (17) 
of fig . 3 ) will determine the value of 0* . 

Slope of boundary- layer displacement - thickness curve .- The slope 
of the boundary-layer displacement - thickness curve may be written as 

With equations (17) 

do* 
dx 

do* 
dx 

and (18), 

0* 
0* d -

de + e e 
e dx dx 

equation (20) becomes 

where the first term in equation (21) is the flat -plate solution . 

(20) 

(21 ) 

Skin friction of a surface with pressure gradient . - If equations (16) 
and (17) are used, the mean skin - friction drag coefficient of a surface 
with a pressure gradient can be written as 

(22) 
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where7 as before7 Pl and Ml are t he pressure and Mach number in 
the undisturbed stream and P and M are the local pressure and Mach 
number in the stream at the edge of the boundary layer. 

By utilizing equation (19) in a nondimensional form 7 equation (22) 
was evaluated for Ml = 4.00 and 6.86 (the Mach number of the Langley 
ll - inch hypersonic tunnel) and various values of Mach number immediately 
f oll owing the shock at the leading edge of a curved plate Ma7 the Mach 
number variation from the leading edge of the airfoil t o the trailing 
edge being assumed linear . The results showed large increases in the 
ski~ friction for a surface w~th a Mach number gradient compared with a 
flat surface at zero inclination t o the flow as illustrated in figure 8 . 

Method of Calculating Effect of Boundary Layer 

on Surface Pressures 

Flat plate.- In the presence of boundary layer, the Mach number 
var i es chordwise along a flat plate because of the varying slope of 
the effective or displacement boundary-layer thickness (from eq. (13)). 
The use of the actual Mach number variation along the plate was felt 
to be an unnecessary complication; instead, the conditions where the 
average angular slope of the boundary layer occurred (the quarter-chord 
point) were chosen to represent the conditions over the entire plate 
for the purpose of calculating a boundary-layer profile. 

A boundary-layer displacement surface (5*(x) ) is calculated by 
using equation (12) and the calculations are based on the Mach number 
obtained from the inviscid theory. By adding the average angular slope 

5* contour 

surface to 
obtain average 
conditions 

Surface 

of the displacement thickness (~ in the accompanying sketch) to the 
angle which the plate surface makes relative to the initial free 
stream (~) to obtain the average deflection angle of the flow (~I), 
the effective Mach number for computing a boundary layer for the next 
approximation can be found . The process is repeated until the effec­
tive Mach number agrees with the calculated profile. In this analysis, 
the iteration process was done very readily by means of graphs of the 
shock (expansion) equations and the boundary-layer displacement­
thickness slopes. 
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The Mach number profile and, consequently, the pressure distribu­
tion is established by expa~ding the air downstream from the average 
point over the boundary-layer displacement surface and isentropic ally 
compressing the air in the upstream direction from this pOint. The 
theory, of course, is based upon the absence of such a variation 
in the free stream over the plate; thus, the results obtained are an 
approximation to the actual occurrence. The closeness of the approxi ­
mation will be determined by the shape of the boundary-layer displace­
ment surface involved. 

Actually, if the Mach number determined from the inviscid theory 
is used to calculate a displacement surface and the slope of this surface 
at a given point is subtracted from the expansion angle for the inviscid­
theory Mach number, the surface pressures are close to those obtained 
from the previous iteration process. The method of calculation by the 
iteration process was preferred, however, since the physical processes 
were more nearly duplicated. Also, the iteration procedure was not 
much more tedious because graphs of the various functions were used. 

As the leading edge is closely approached, the slope or the 
boundary-layer displacement surface becomes large and the theory is 
invalid. The range of applicability of this method of calculating 
the effect of the boundary layer is restricted to small angles of the 
displacement profile which in itself does not restrict the solution 
much more than the assumptions of the orders of magnitude inherent in 
the boundary-layer theory. 

Circular-arc surface.- With pressure gradient, a somewhat different 
approach is required than for a flat plate. For the determination of 
the flow about the circular-arc profiles used in this investigation, 
the assumption was first made that there was no loss in stagnation 
pressure over that predicted by the oblique shock theory with inviscid 
flow. Then, a two-step linear variation of Ma~h number with distance 
along the surface was assumed (labeled "a" in accompanying sketch) 

M 

x 
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which approximated the curve obtained from the inviscid theory (b). 
The boundary-layer momentum thickness (eq. (19)) and the angular slope 
of the boundary-layer displacement profile (eq. (21)) were determined 
on the basis of this linear assumption. The theoretical ~xpansion 
around the geometric surface was decreased by the amount of the slope 
of the boundary-layer displacement thickness to determine a new Mach 
number distribution (c) and the boundary layer was recalculated by 
using the linear approximation (d) to this curve. When, after succes­
sive approximations, the final iteration was closely in agreement with 
the final assumed curve, the mean was taken between the result of the 
final iteration and the Mach number variation assumed for its determina­
tion. This final Mach number variation then determtned the pressure 
distribution over the surface when the gain in entropy was assumed to 
be that predicted by the oblique-shock theory with inviscid flow. 

EXPERIMENT 

Apparatus 

Tunnel.- The tests were conducted in the Langley ll-inch hyper­
sonic tunnel, which is a blowdown tyPe utilizing both a high-pressure 
tank and a vacuum tank. The tunnel is described in references 11 and 
12 and a calibration of the nozzle used for these tests is presented 
in reference 12. The tests in this investigation were made at an 
average settling-chamber pressure of 25.5 atmospheres and an average 
stagnation temperature of 7300 F so that the Reynolds number was 
about 980,000 based on a 4-inch length. 

Models.- Flat-plate pressure data were obtained from a wedge­
shape profile and the flat side of a profile formed by a segment of 
a circle. Pressure data with gradient were obtained from the circular­
arc surface of the segment profile. In plan form, all models were 
4 inches square and had a thickness-to-chord ratio of 0.05. A 
photograph of one of the typical pressure models, that with the segment 
profile for which pressures were taken on the circular-arc surface, is 
shown in figure 9. These models had smooth machined surfaces with knife 
leading edges. Leading edges were maintained between 0.001 and 
0.002 inch thick and the surfaces and edges were maintained in good 
condition during the series of tests by periodic polishing. Orifices, 
0.040 inch in diameter and located chordwise at the midspan station, 
were formed by tubing which was flush with one surface and projected 
through the opposite surface . Additional data for the pressures on a 
flat surface parallel to the flow were obtained from a 200 wedge-shape 
model with a span of 3 inches. Pressures on one surface of this model 
were obtained as close as 1/8 inch from the leading edge and no farther 
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than 2} inches from the leading edge. The angle of attack of these 

models was set to within about 0.20 • 

Two models with a 4-inch-square plan form and a 5-percent maximum 
thickness were used to obtain total drag data. One of these models 
had a wedge section and the other had a diamond section. These 
models, which are shown in figure 10, were attached to the ~upport 
sting, which housed the f orce balance, by means of a cone having an 
included angle of 6 .70 with a base of 0.5-inch diameter. The base for 

the diamond-section model was l~ inches downstream of the trailing edge 

and 2~ inches downstream of the trailing edge for the wedge-section 

model. 

Pressure recording.- Pressures over the surfaces were measured by 
means of the aneroid-type, six-cell manometers described in reference 11. 
In these instruments, the deflection of a diaphragm is converted into a 
rotation of a small mirror which reflects a beam of light to a moving 
film thereby giving a time history of the pressure. In these tests, 
the air expanded to as much as 60 percent below the free-stream pres­
sure of about 0.2 inch of mercury. This lowest pressure can be measured 
with about 7 percent accuracy, whereas pressures of 1 i nch of mercury 
can be measured within about one-half of I percent accuracy. Higher 
pressures were measured within I to 2 percent accuracy. 

Schlieren.- The schlieren photograph presented in figure 11 was 
taken by mea ns of the schlieren system, described i n reference 11, 
which is of the highly sensitive double-traverse type. The photograph 
was taken with a flash of a few micro-seconds duration. 

Errors in total drag coefficients.- The errors i n total drag coef­
ficients arise from errors in Mach number, stagnation pressure, and 
angle-of-attack determination and from the force-balance sensitivity. 
The calculated possible error that can be attributed to the cumulative 
effect of errors in these parameters is as follows: 

CD ~D 

0. 005 t o . 0015 
. 010 i.0018 
.015 ±. 0021 
. 020 ±.0024 

A scatter of the data that is slightly higher than this calculated 
error is sometimes encountered. This additional source of error is 
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due to the uneven heating effect of the high-stagnation- temperature air 
on the components of the balance. 

The drag forces as measured for the two force models included the 
force due to the conical suppor t and the interference effects of the 
support . Corrections for the drag force on the unshielded part of the 
conical support were applied to the total drag results . These correc ­
tions were based on calculated drag results for complete cones with 
limi ted experimental checks.. No attempt was made to determine the 
effects of sting interference for the diamond-section model but these 
effects are believed to be small since the area affected by the shocks 
from the support constitute l e ss than 5 percent of the model surface 
area. 

COMPARISON OF THEORY WITH EXPERIMENT 

The boundary layer was determined to be laminar by examination of 
its appearance in schlieren photographs. The extremely high density 
gradient in the outer part of the boundary layer with very little 
gradient near the wall makes the laminar boundary layer readily dis­
tinguishable from a turbulent boundary layer where the change in 
gradient is less abrupt . Also, the manner in which the boundary layer 
leaves the trailing edge of the airfoils is a good indication that it 
is laminar because very little diffusion or change i n its appearance 
oc curs as it separates f rom the surface near the trailing edge. Further 
corroboration i8 offered by the measured minimum drags which would be 
expected to be almost twice as great were the boundary layer turbulent . 

In order to determine whether the surface temperatures approach the 
recovery temperatures closely enough so that the airfoils could be 
effectively considered insulated plates, the diamond -shape airfoil was 
tested with thermocouples imbedded flush with the airfoil surface . 

The angle of attack was varied from 00 to 7~0 . Both the highest and 

lowest skin temperatures were recorded at the highest angle of attack . 

On the lower surface at ~ = 710 60 seconds after the start of the 
2 

test, the skin temperature was 84 percent of the stream stagnation 
temperature at the 7 -percent- chord station, at midchord 71 percent, and 
at the 94-percent - chord station 73 percent of the stagnation tempera-

o 
ture . On the upper surface at ~ = 7~ at the 7 -percent - chord sta-

tion, the skin temperature was 80 percent of the stagnation temper~ture 
and 65 percent of the stagnation temperature at both midchord and the 
94-percent station. These skin temperatures are considered sufficiently 
high so that only small errors result whe n the airfoils are considered 
as insulated plates . 

_J 



3C NACA TN 2773 

Flat-Plate Pressure Distribution 

Figure 11 presents a comparison between pressure distributions 
obtained from the theory (where the inviscid flow is corrected for 

17 

the displacing effect of the boundary layer) and experiments in the 
Langley ll-inch hypersonic tunnel with a flat surface set at various 
angles to the incident flow. The ratio used as a parameter in this 
figure is a measure of the local pressure rise of the surface from the 
free-stream static pressure. 

A very reasonable agreement between experiment and theory is seen at 
00 angle of attack of the surface (fig. ll(a)) and at small angles of 
attack on the lower surface (fig. ll(c)). The results shown in fig-
ure ll(a) were presented by Becker in reference 13. Appreciable deviations 
from the theory are seen even at sm~ll angles of attack for the upper sur­
face (fig. ll(b)), and on the lower surface the deviations from the theory 
become appreciable at an angle of incidence to the flow of about 80 

Various methods have been attempted to explain the discrepancy 
between the experimental pressures on the front part of the upper 
surface and the pressures predicted by the boundary-layer displacement 
effect. Condensation of air was ruled out since calculations, in which 
the oxygen component of air was assumed to condense first, showed that 
only at the angle of attack of 40 shown in figure ll(b) was there a 
possibility of even a small amount of condensation, and these calcula­
tions were made on the assumption that the full 40 expansion could be 
obtained. 

Other calculations were made which applied the theory with pressure 
gradient to the upper surface, but this application of the theory with 
pressure gradient changed the pressures predicted by the flat-plate 
theory by an amount too small to explain the discrepancy. 

The deviations from the theory of the results from the rear part 
of the upper surface are attributed largely to a relieving effect about 
the airfoil tips, to boundary-layer shock interaction, and to separa­
tion near the trailing edge. The pressure relieving would tend to 
have a much larger effect on the surface undergoing a pressure drop 
as compared with the opposite surface where a pressure rise is 8ccurring. 
On the lower surface, only at an angle of attack of about 80 do the 
measured pressures start deviating from those predicted by the theory 
with boundary layer. Near the leading edge, the theory would not be 
expected to apply quantitatively but would serve only to indicate 
trends. The boundary layer at the leading edge can be modified by the 
large pressure gradient, very near the leading edge, due to the 
boundary-layer growth and by the pressure gradient due to leading-edge 
bluntness. Another modifying factor is due to the interaction of the 
leading-edge shock with the rapidly growing boundary layer. In addi­
tion, interaction between the various factors would be expected. 
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The boundary layer is shown by the schlieren photograph inserted 
in figure l l ( a ). This boundary layer deflects the main flow away from 
the surface so that a shock results at the leading edge followed by a 
high pressure which decreases with distance from the leading edge as a 
result of a gradual expansion after the shock . Without boundary layer, 
the pressure rise should be zero . A curvature to the leading-edge shock 
should be noted near the leading edge. 

Pressure Distribution Over Circular-Arc Profile 

Figure 12 presents a comparison of the pressure distributions 
predicted by the inviscid theory, by the theory corrected for boundary 
layer, and by the pressure distributions obtained experimentally at a 
Mach number of 6.86 at various angles of the chord of the segment 
profile relative to the incident air flow. 

As the angles of attack increase from 00 to 60
, fair to good 

agreement generally exists between experiment and theory corrected for 
boundary layer . An increasing extent of separation as the angle of 
attack increases should be noticed near the trailing edge which, of 
course, is not predicted by this theory. 

At negative angles of ~, experiment, i n general, shows good 
agreement with the corrected theory, though the ~ressures near the 
leading edge are lower than those given by the theory with boundary 
layer. 

From these results, the boundary layer over a curved surface, such 
as the one tested here, seems to cause an apparent thickening and 
distortion of the actual surface contours. The result differs from 
that for a flat plate for, in this case, as the trailing edge is 
approached, there is an acceleration in the growth of boundary layer 
as the air flows from the relatively low Mach number region at the 
leading edge to a considerably higher Mach number near the trailing 
edge. This acceleration in the growth of the displacement surface of 
the boundary layer as the rear of the curved surface is approached 
occurs only at the higher local Mach numbers. Below a Mach number of 
about 2 . 6, the gradient actually tends to thin the boundary-layer dis­
placement profile. (Refer to eq. (21 ) .) 

Drag Obtained From Theory and From Experiment 

Figure 13 presents a comparison of the drag coefficients obtained 
from the inviscid theory, the inviscid theory with skin friction added, 
and the coefficients obtained from experimental data. The two-dimensional 
oblique- shock and expansion relations, including a correction for tip 
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effects from the linear theory, were used to obtain the inviscid-theory 
drag. For the wedge-section airfoil, a base pressUre of 50 percent of 
free-stream pressure was used. This value was obtained from actual 
pressure measurements on the base of a pressure model of this airfoil. 
The method used for obtaining the skin-friction drag coefficient was 
that outlined in the theoretical section of this paper in which the 
flow conditions at the quarter-chord point were used to determine the 
boundary layer as was done in determining the effect of the boundary 
layer on the surface pressures. 

The drag obtained from the inviscid theory was use~ for the form 
drag instead of what should be the more accurate form drag obtained 
from the pressures which have been corrected for displacement effect 
because the displacement effect on the pressure drag was small in com­
parison with the friction drag. 

The results obtained for both the models shown in figure 13 indi­
cate good agreement with the results obtained from the inviscid theory 
with skin friction added. The curve of inviscid theory alone is much 
lower than the experimental pOints; in fact, for the wedge airfoil the 
total minimum drag is 3.6 times the minimum drag value given by the 
inviscid theory, and the total mlnlmum drag for the diamond-section 
wing is greater by a factor of about 3 at the test Reynolds number of 

about 106. (For more complete results on the aerodynamic characteris­
tics of the diamond-profile square-plan-form model, see ref. 14.) 
Thus, at this Mach number and Reynolds number, the skin friction is 
evidently an important part of the drag of slender two-dimensional 
profiles at low angles of attack. 

Similar results were also obtained from a force model of the air­
foil with the circle-segment section. In this case also, good agree­
ment existed between the experimental drag results and the results 
obtained from inviscid-theory drag plus skin friction in the range of 
angle of attack from _40 to 40

, with the theory predicting slightly 
higher values of total drag than the experiment outside of this range 
of angle of attack. 

A comparison made between the average theoretical skin-friction 
drag of the circular-arc surface with the chord alined with the stream 
and a flat plate alined with the stream indicates that the skin­
friction drag of the circular-arc surface is considerably higher for the 
test conditions. The experimental data are not accurate enough to show 
clearly this increase and, in general, for all the force models, are not 
accurate enough to show clearly the presence of the temperature effects 
indicated by figure 5. The data are useful, however, as a first-order 
check on the magnitude of the skin-friction drag predicted by theory. 
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CONCLUDING REMARKS 

A simplified theory has been presented by means of which the com­
pressible laminar boundary layer over a two-dimensional surface may be 
cal culated and an estimate made of its effect in distorting the flow 
field about the profile upon which it is being formed. This analysis 
is based on viscous flow with no heat transfer where the velocity dis­
tribution across the boundary layer is linear . 

Comparison of pressures ob t a ined from the boundary-layer theor y 
( zero pressure gradient) with experimental pressures f rom a flat plate 
a t a Mach number of 6 .86 has shown good agreement at zero angle of 
attack a nd at low angles of attack of t he high-pressure surface. The 
low-pressure surface exhibits poor agreement wi t h t he t heory even at 
low angles of attack. 

Comparisons have also been made between surface pressures measured 
on a circular- arc profile and pressures predicted by the boundary-layer 
theor y with the effects of pressure gradient included. Good agreement 
between experiment and theory is found over a wider range of angle of 
attack than was found for a flat plate . 

The results at a Mach number of 6 . 86 for the drag coefficients of 
two 5- percent- thick square - pian- form models showed good agreement 
between theory with skin f r iction included and experiment . The values 
of the minimum total drag coefficients were at least three times the 
minimum drag coefficient predicted by the inviscid theory; thus, the 
skin- friction drag is evidently an important part of the low angle 
drag at high Mach numbers and Reynolds numbers of about 106 . 

Langley Aeronautical Laborator y 
Nationa l Adv isory Committee for Aeronautics 

Langley Field, Va . , May 26, 1952 
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APPENDIX 

TWO LAWS FOR THE VARIATION OF VISCOSITY AND THEIR 

EFFECT ON THE REYNOLDS NUMBER RELATIONS 

The parameter P5U/~o of equation (12) may be expressed as 

P5U = MP r~ (1 + k) 

~o ~o ~R To 
(Al) 

Let the viscosity at the wall be represented by Sutherland's formula 

~o A 
T 3/2 

o (A2 ) 

where A and B are empirical constants depending on the gas. Sub ­
stituting the value of ~o from equation (A2) into equation (AI ) gives 

(A3) 

The wal l viscosity and stagnation temperature may be replaced by 
the viscosity and temperature in the free stream; thus, 

P5U(~)3/2 
~5 \1 + k 

I + k 

(A4) 

+ B 

(This equation, of course , has the disadvantage in wind-tunnel work 
that, if the Mach number is high, the static temperature may be in 
the extremely low temperature range where experimental data are not 
available and have to be obtained from an extension of known data.) 
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Equation (A4) shows that the boundary- layer thicknesses are not the 
simple functions of Mach number and free-stream Reynolds number which 
are obtained from the power formula for viscosity where 

~o (~~)" (A5) -
~5 

and 

P5U P50(_1 r (A6) 
~o ~5 1 + k 

Equation (A5), in general, is only adequate over a relatively 
small ra ge of temperature (though some few gases may be represented 
with good or better accuracy by this equation than by the formula of 
Sutherland) ; however, as the Mach number increases, the difference 
betwee n free-stream temperature and stagnation temperature becomes 
large, and as the temperature range varies so does the power n for 
air and many gases. For example, at a Mach number of 7 and a free­
stream temperature of - 3000 F, the stagnation temperature is 12690 F 
(When air is the medium), and for this large temperature difference 
the power formula is unsatisfactory. 

For air, values of A = 0 . 0220 xlO-6 lb_sec/(OF)1/2_ft2 and 
B = 1770 F give errors of less than 1 percent in the range of tem-

1 
perature from 1400 to 7500 F absolute and an error of only 22 percent 

between 2000 0 and 35000 F absolute. These values have been used in the 
computation of the curves presented in figure 5 ; however, the values 

of A = 0 . 0291 x 10-6 lb_sec/(~ )1/2 _ft2 and B = 1980 F obtained 
from reference 3 are somewhat better for temperatures above 2500 F 
absolute. The magnitudes of these errors have been obtained from a 
comparison with experimental data obtained from references 15 to 19: 
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TABLE I 

INTEGRAL TERM OF EQUATION (19) 

M 1M e M
9

dM 

o 5 (5 + M2)3. bO 

0 0 
1.00 .000047 
1.25 .000203 
1.50 .000789 
2.00 . 006489 
3. 00 .06779 
4.00 .2432 
5.00 ·5592 
6 . 00 .9957 
7·00 1.525 
8 .00 2.118 
9 ·00 2.760 

10.00 3.440 
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Figure 1 .- Ratio of boundary- layer displacement thickness to total thickness as a 
function of the Mach number at the edoe of the boundary layer where the 
velocity distribution across the boundary layer is linear. 
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drag coefficients of two square plan-form models. M=6.86 and 
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